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THE QUADRATIC RECIPROCITY LAW

Amin Witno

Abstract
We discuss four detailed proofs of the quadratic reciprocity law. The first

proof, right off Euler’s criterion, follows the path of Gauss’ lemma and Eisen-
stein’s lattice counting. Relying on the lemma again, we then give a second proof
via an equivalent law that was conjectured by Euler, as well as a third, due to
Eisenstein, involving some properties of complex functions. For a fourth proof,
we employ Gauss sum and results from finite fields.

These notes have been prepared as a supplementary reading assignment for my
Number Theory students (Math 313) at Philadelphia University, Jordan.1 Outline
notes are more like a revision. No student is expected to fully benefit from these notes
unless they have regularly attended the lectures.

1 Prelude

Throughout this article, p stands for an odd prime, and a an arbitrary integer but not
a multiple of p. Any other number variable, if undeclared, is understood integer.

Definition. We call a a quadratic residue or non-residue modulo p, depending whether
the congruence x2 ≡ a (mod p) has a solution or no solution, respectively. The Legendre
symbol of a mod p is the quantity

(
a
p

)
defined by(

a

p

)
=

{
+1 if a is a quadratic residue modulo p
−1 if a is a quadratic non-residue modulo p

The well-known reciprocity law is commonly stated as follows.

The Quadratic Reciprocity Law. If q is another odd prime, distinct from p, then(
q

p

)
=

(
p

q

)
(−1)(

p−1
2 )( q−1

2 )

Equivalently, the law can be rephrased based on the two classes of primes mod 4:

(
q

p

)
=


(
p

q

)
if p%4 = 1 or if q%4 = 1

−
(
p

q

)
if p%4 = 3 and q%4 = 3

1Copyrighted under a Creative Commons License c⃝2019 Amin Witno
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The notation (% ) here represents residue mod operator, given by the formula

m%n = m−
⌊m
n

⌋
× n

and where ⌊·⌋ indicates the greatest integer function.
More than 300 proofs of the reciprocity law have been published, many of which

rely on the so-called Gauss’ lemma. Our goal for now is to establish the following result
of Euler, of which Gauss’ lemma is a close consequence.

Theorem 1 (Euler’s Criterion). The Legendre symbol
(
a
p

)
satisfies the congruence(

a

p

)
≡ a

p−1
2 (mod p)

Exercise 1. We ask you first to show that Euler’s criterion gives the identity(
ab

p

)
=

(
a

p

) (
b

p

)
and the formula (

−1

p

)
= (−1)

p−1
2 =

{
+1 if p%4 = 1
−1 if p%4 = 3

Definition. A full system modulo p if any set of p − 1 integers representing distinct
non-zero residue classes modulo p. In other words, S is a full system if and only if
|S| = p− 1 and {x% p | x ∈ S} = {1, 2, . . . , p− 1}.

Theorem 2. Let S be a full system modulo p, and let p - a. Then aS := {ax | x ∈ S}
is also a full system modulo p.

Proof. It is clear there is no zero residue in aS, so it suffices to see that its elements
are distinct modulo p. Well, if ax ≡ ay (mod p) for some x, y ∈ S, then p divides
ax − ay = a(x − y). Since p - a and p is a prime, then we would have p | x − y, i.e.,
x ≡ y (mod p), which is not possible in S by design. ▽

The term cancellation law refers to the proposition that ax ≡ ay (mod p) implies
x ≡ y (mod p), under the condition p - a. We mention this because we will encounter
this law again next.

Theorem 3 (Fermat’s Little Theorem). If p - a, then ap−1 ≡ 1 (mod p).

Proof. Let us have two sets of full system modulo p, i.e., S = {1, 2, . . . , p− 1} and the
other one aS. They yield the congruence

1× 2× · · · × (p− 1) ≡ a× 2a× · · · × (p− 1)a (mod p)

Since p - (p− 1)!, the cancellation law applies, and 1 ≡ ap−1 (mod p). ▽

Suppose for the moment that
(
a
p

)
= +1, which means that we have an integer x

for which x2 ≡ a (mod p). It is clear that p - x, hence by Fermat’s little theorem,

a
p−1
2 ≡ xp−1 ≡ 1 (mod p)

And that is Euler’s criterion. As for the case
(
a
p

)
= −1, we shall see shortly.
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Theorem 4 (Wilson’s Theorem). We have (p− 1) ! ≡ −1 (mod p).

Proof. Let S = {1, 2, . . . , p − 1}. We have demonstrated that for each x ∈ S, the
set xS is a full system modulo p. In particular, there is a unique y ∈ S such that
xy ≡ 1 (mod p). Occasionally, we might have y = x, i.e., when x2 ≡ 1 (mod p), but
that can happen if and only if p divides x2 − 1 = (x− 1)(x+ 1), i.e., x ≡ ±1 (mod p).
In other words, the elements of S can be paired two by two of the form {x, y} with
xy ≡ 1 (mod p), except for x = 1 and x = p− 1. Thus

(p− 2) ! = 2× 3× · · · × (p− 2) =
∏
xy≡1

(x× y) ≡ 1 (mod p)

and multiplying by (p− 1) gives the result (p− 1) ! ≡ −1 (mod p). ▽

In the proof of Fermat’s little theorem earlier, observe that the displayed congruence
simplifies to −1 ≡ −ap−1 (mod p) by Wilson’s theorem, bypassing the cancellation law.
However, we did not want to imply that Fermat’s theorem stands upon Wilson’s. And
by the way, despite its name, it was Lagrange who proved Wilson’s theorem.

By similar reasoning, for each x ∈ S, there is a unique y ∈ S for which xy ≡
a (mod p). Hence, if

(
a
p

)
= −1, then it is not allowed to have y = x. In that case, the

elements of S can be paired two by two of the form {x, y} with xy ≡ a (mod p). Thus
by Wilson’s theorem,

−1 ≡ (p− 1) ! = 1× 2× · · · × (p− 1) =
∏
xy≡a

(x× y) ≡ a
p−1
2 (mod p)

which completes Euler’s criterion for both cases.

2 Gauss, Proof No 3

Gauss himself wrote eight different proofs of the reciprocity law. His third seems to be
the most popular as a basis of other later proofs, including a modified version we put
together here, initially introduced by Eisenstein.

Definition. A set H of p−1
2

integers is called a half system modulo p if and only if the
set {±x | x ∈ H} is a full system modulo p.

Theorem 5. Let H be a half system modulo p, and let p - a. Then aH is also a half
system modulo p.

Proof. The relation ax ≡ ±ay (mod p) implies x ≡ ±y (mod p). Hence, if the elements
in the set {±x | x ∈ H} are distinct modulo p, so are those in {±ax | x ∈ H}. ▽

So let us have two sets of half system modulo p, i.e., H = {1, 2, . . . , p−1
2
} and aH.

This implies that we have a one-to-one correspondence between x ∈ aH and r ∈ H, in
such a way that x ≡ ±r (mod p). Hence, if we let γ := γ(a, p) denote the number of
occurrences with negative signs, then we may have the congruence

(−1)γ × 1× 2× · · · × p− 1

2
≡ a× 2a× · · · × p− 1

2
a (mod p)
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Cancellation law gives us (−1)γ ≡ a
p−1
2 (mod p), which, by Euler’s criterion, becomes(

a

p

)
= (−1)γ(a,p)

Exercise 2. This last identity is a formula known as Gauss’ lemma. At this point,
your part is to apply Gauss’ lemma and establish another formula,(

2

p

)
= (−1)

p2−1
8 =

{
+1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8)

by letting a = 2 and evaluating γ(2, p) accordingly. Solution is provided at the end of
this article, but it really is worth your effort.

We next claim that if a is an odd number, then
(
a
p

)
= (−1)Γ(a,p), where we define

Γ(a, p) :=

p−1
2∑

k=1

⌊
ak

p

⌋
by showing that γ(a, p) and Γ(a, p) are of the same parity, i.e., that

γ(a, p) ≡ Γ(a, p) (mod 2)

Now being odd, p ≡ 1 (mod 2), so we may write

Γ(a, p) =

p−1
2∑

k=1

⌊
ak

p

⌋
≡

p−1
2∑

k=1

⌊
ak

p

⌋
p (mod 2)

Then we recall our mod operator formula, ak% p = ak −
⌊
ak
p

⌋
p, and obtain

Γ(a, p) ≡

p−1
2∑

k=1

ak −

p−1
2∑

k=1

ak% p (mod 2)

But the second sum here has its summands from the set {x% p | x ∈ aH}, where for
each x ∈ aH, there is a unique r ∈ H such that, either x% p = r or else x ≡ −r
(mod p). For the latter case, we have x% p = p − r, and a total of γ such cases.
Therefore, if we reorder the set H by labeling these γ elements first, then

Γ(a, p) ≡

p−1
2∑

k=1

ak −

 γ∑
i=1

(p− ri) +

p−1
2∑

i=γ+1

ri

 (mod 2)

Note that as −1 ≡ 1 (mod 2), we may as well replace every minus sign with plus sign:

Γ(a, p) ≡

p−1
2∑

k=1

ak +

γ∑
i=1

p+

γ∑
i=1

ri +

p−1
2∑

i=γ+1

ri = γ p+

p−1
2∑

k=1

ak +

p−1
2∑

i=1

ri (mod 2)

And since the summands ri run through all the elements of H, then we have

p−1
2∑

i=1

ri =

p−1
2∑

k=1

k
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and therefore,

Γ(a, p) ≡ γ p+

p−1
2∑

k=1

(a+ 1)k (mod 2)

This is where we want a to be odd, so that a + 1 ≡ 0 (mod 2) and Γ(a, p) ≡ γ p ≡ γ
(mod 2) as desired.

In particular, now we are going to let a = q, which stands for another odd prime
number distinct from p. Thus we have demonstrated that(

q

p

)
= (−1)Γ(q,p)

The rest of the proof is an observation from basic analytic geometry.
Consider the straight line ℓ on the xy-plane given by the equation y = q

p
x, as well

as the region R bounded by 1 ≤ x ≤ p−1
2

and 1 ≤ y ≤ q−1
2
. Since the fraction q

p
, i.e.,

the slope of ℓ, is in reduced form, there are no integral lattice points lying on ℓ between
(0, 0) and (p, q). In particular, none of the p−1

2
× q−1

2
lattice points in R lies on ℓ.

•

•

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

•
•
•
•
•

•
•
•
•
•

p−1
2

q−1
2

ℓ

sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

(p,q)

Let us count how many lattice points in R lie below ℓ. Well, for a fixed integer
x ∈

[
1, p−1

2

]
, we have a lattice point (x, y) corresponding to the values y = 1, y = 2, . . . ,

up to y =
⌊
qx
p

⌋
. Summing over x gives us the total:

p−1
2∑

x=1

⌊
qx

p

⌋
= Γ(q, p)

By symmetry, we can also say that the number of lattice points in R above ℓ is Γ(p, q).
Hence, in all, the number of lattice points in R is given in two ways:

Γ(q, p) + Γ(p, q) =
p− 1

2
× q − 1

2



WON 8 – The Quadratic Reciprocity Law 6

From here, it follows that(
q

p

) (
p

q

)
= (−1)Γ(q,p) (−1)Γ(p,q) = (−1)

p−1
2

× q−1
2

which is an equivalent form of the quadratic reciprocity law. ▽

3 Interlude

Before Gauss, Euler had actually discovered the reciprocity law but was unable to prove
it—thus named a conjecture. His version of the law, however, looked quite different
from what we are familiar with today.

Theorem 6 (Euler’s Conjecture). Let p and q be distinct odd prime numbers. If a is
a positive integer such that p ≡ ±q (mod 4a), then

(
a
p

)
=
(
a
q

)
.

Exercise 3. Your job now is to prove that Euler’s conjecture is indeed equivalent to
the quadratic reciprocity law proved in the preceding section. Solution is provided at
the end. For a start, try first to obtain

(
a
p

)
=
(
a
q

)
given that a is prime.

For the sake of completion, in this section we shall demonstrate how Euler could
have proved his conjecture had he known the lemma of Gauss. And here we go.

We wish to show that if p ≡ ±q (mod 4a), then (−1)γ(a,p) = (−1)γ(a,q). Thus the
key is proving that γ(a, p) and γ(a, q) are of the same parity.

Recall that γ(a, p) counts the number of elements x ∈ aH for which x ≡ −r (mod p)
with r ∈ H = {1, 2, . . . , p−1

2
}, i.e., for which p

2
< x% p < p. So if we let

⌊
ar
p

⌋
= k − 1,

then this remainder condition is equivalent to having
(
k − 1

2

)
p < ar < kp, or(

k − 1
2

)
p

a
< r <

kp

a

In other words, we count the number of r ∈ H which meets this compound inequality
with any value of k ≥ 1. Since r ≤ p−1

2
, the left-hand inequality implies that k ≤

⌊
a
2

⌋
.

Conversely, if k ≤
⌊
a
2

⌋
, then kp

a
< p−1

2
+ 1. This observation enables us to enumerate

such r by evaluating
⌊
kp
a

⌋
−
⌊ (k− 1

2
)p

a

⌋
for all k in the range 1 ≤ k ≤

⌊
a
2

⌋
, i.e.,

γ(a, p) =

⌊a
2
⌋∑

k=1

( ⌊
kp

a

⌋
−
⌊
(k − 1

2
)p

a

⌋ )
Now we substitute p = 4am+ n, where 0 < n < 4a, and check that this sum becomes

γ(a, p) =

⌊a
2
⌋∑

k=1

(
2m+

⌊
kn

a

⌋
−
⌊
(k − 1

2
)n

a

⌋ )
Therefore, if p ≡ q (mod 4a), then we may write q = 4am′ + n, and similarly we get

γ(a, q) =

⌊a
2
⌋∑

k=1

(
2m′ +

⌊
kn

a

⌋
−
⌊
(k − 1

2
)n

a

⌋ )
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That gives us γ(a, p) ≡ γ(a, q) (mod 2) as desired. Meanwhile, if p ≡ −q (mod 4a),
then we write q = 4am′′ + (4a− n) with 0 < 4a− n < 4a. In this case, similarly,

γ(a, q) =

⌊a
2
⌋∑

k=1

(
2m′′ + 2 +

⌊
k(−n)

a

⌋
−
⌊
(k − 1

2
)(−n)

a

⌋ )
If we observe that ⌊−t⌋ = −⌊t⌋ − 1 for any non-integer rational number t, then

γ(a, q) =

⌊a
2
⌋∑

k=1

(
2m′′ + 2−

⌊
kn

a

⌋
+

⌊
(k − 1

2
)n

a

⌋ )
And once again, we have γ(a, q) ≡ γ(a, p) (mod 2).

4 Eisenstein, A Proof in C
This next proof requires some familiarity with complex numbers and functions, e.g.,
Euler’s formula eix = cos x+ i sinx, where x ∈ R, measured in radian.

Definition. Set ζ := e2πi/n = cos 2π
n
+ i sin 2π

n
, i.e., a primitive n-th root of unity.

It is known that the geometric sequence {ζk} is cyclic with period n. In particular,
we have ζn = 1 and ζm = ζm%n for anym ∈ Z. Moreover, the fact that 1, ζ, ζ2, . . . , ζn−1

are all distinct zeros of zn− 1 gives us the polynomial factorization zn− 1 =
∏
(z− ζk)

over C, where k can vary within any complete residue system modulo n.

Theorem 7. If n ∈ N and is odd, then for all v, w ∈ C,

vn − wn =
n−1∏
k=0

(
ζkv − ζ−kw

)
Proof. Note that the claimed identity holds for w = 0, where

∏
ζkv = vn(ζn)

n−1
2 = vn.

Assuming w ̸= 0, then

vn − wn = wn
(( v

w

)n
− 1
)

= wn

n−1∏
k=0

( v
w

− ζk
)

=
n−1∏
k=0

(
v − ζkw

)
Now we need the fact that if gcd(a, n) = 1, then ab ≡ ac (modn) implies b ≡ c (modn),
(This is a generalization of the cancellation law we have seen in Section 1, also known as
Euclid’s lemma.) from which we get {ak%n | 0 ≤ k ≤ n−1} = {0, 1, . . . , n−1}. Hence,
ζk and ζak run through the same set of values in the above product. In particular, since
n is odd, we choose a = −2k:

vn−wn =
n−1∏
k=0

(
v − ζ−2kw

)
=

n−1∏
k=0

ζ−k

n−1∏
k=0

ζk
(
v − ζ−2kw

)
= (ζ−n)

n−1
2

n−1∏
k=0

(
ζkv − ζ−kw

)
and the result follows as ζ−n = 1. ▽

Definition. We consider the complex function f(z) := e2πiz − e−2πiz for all z ∈ C.
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Observe that f(−z) = −f(z) and that f(z + 1) = e2πize2πi − e−2πize−2πi = f(z),
due to the fact that e2πi = 1. By induction, it then follows that f(z+m) = f(z) for all

m ∈ Z. Moreover, recall the complex trigonometric function sin z = eiz−e−iz

2i
and check

that f(z) = 2i sin 2πz. So if x ∈ R, then f(x) = 0 if and only if 2x ∈ Z.

Exercise 4. Granted that you have not seen sin z before, but are comfortable with
Euler’s formula. Then write z = x+ iy with x, y ∈ R, and define ez = ex+iy := exeiy =
ex(cos y + i sin y). Try this approach and prove that f(x) = 0 if and only if 2x ∈ Z.

Theorem 8. If n ∈ N and is odd, then for all z ∈ C,

f(nz) = f(z)

n−1
2∏

k=1

f

(
z +

k

n

)
f

(
z − k

n

)
Proof. If we let v = e2πiz and w = e−2πiz, then f(nz) = vn − wn, so we apply the
preceding theorem, noting that ζkv − ζ−kw = e2πi(z+k/n) − e−2πi(z+k/n) = f(z + k/n):

f(nz) =
n−1∏
k=0

f

(
z +

k

n

)
= f(z)

n−1
2∏

k=1

f

(
z +

k

n

) n−1∏
k=n+1

2

f

(
z +

k

n

)

Now it remains to show that the very last product can be expressed as

n−1∏
k=n+1

2

f

(
z +

k

n

)
=

n−1
2∏

k=1

f

(
z − k

n

)

To see this, observe that f(z + k
n
) = f(z + k

n
− 1) = f(z − n−k

n
), and that as k goes

from n+1
2

to n− 1, the value of n− k goes from 1 to n−1
2

in the reverse order. ▽

At this point we go back to Gauss’ lemma: Let H = {1, 2, . . . , p−1
2
}, where we have

a one-to-one correspondence between x ∈ aH and r ∈ H, i.e., that x ≡ ±r (mod p),
with exactly γ(a, p) of these needing the negative sign, and where (−1)γ(a,p) =

(
a
p

)
.

For such pair (x, r), the stated congruence implies that x
p
∓ r

p
∈ Z. Therefore, the

relation f(z + m) = f(z) gives us f(x
p
) = f(± r

p
), which then, since f(−z) = −f(z),

becomes f(x
p
) = ±f( r

p
). Now letting a = q, we take the product of such equality over

all r ∈ H:

p−1
2∏

r=1

f

(
qr

p

)
= (−1)γ(q,p)

p−1
2∏

r=1

f

(
r

p

)
=

(
q

p

) p−1
2∏

r=1

f

(
r

p

)
On the other hand, if we take similar product with f(nz) in the preceding theorem,
with n = q and z = r/p, then we get

p−1
2∏

r=1

f

(
qr

p

)
=

p−1
2∏

r=1

f

(
r

p

) p−1
2∏

r=1

q−1
2∏

k=1

f

(
r

p
+

k

q

)
f

(
r

p
− k

q

)
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We substitute the left-hand side by
(
q
p

)∏
f( r

p
) and, noting that f( r

p
) ̸= 0 since p - 2r,

we cancel
∏

f( r
p
) off both sides to obtain

(
q

p

)
=

p−1
2∏

r=1

q−1
2∏

k=1

f

(
r

p
+

k

q

)
f

(
r

p
− k

q

)
Of course, we now reverse the roles of p and q (as well as the indices r and k for
convenience) and employ the relation f(−z) = −f(z) once again:

(
p

q

)
=

q−1
2∏

k=1

p−1
2∏

r=1

f

(
k

q
+

r

p

)
f

(
k

q
− r

p

)
=

q−1
2∏

k=1

p−1
2∏

r=1

f

(
k

q
+

r

p

)
f

(
r

p
− k

q

)
(−1)

Without the factor of (−1), this product would be
(
q
p

)
in the form given earlier, i.e.,

(
p

q

)
=

(
q

p

) q−1
2∏

k=1

p−1
2∏

r=1

(−1)

and that gives the reciprocity law. ▽

5 Gauss, Proof No 6 in F
This proof relies on some knowledge about finite fields.

Definition. Let F denote the finite field of order qp−1, i.e., an extension of degree p−1
over the prime field Zq. We know that the multiplicative group F∗ is cyclic of order
qp−1 − 1 which, according to Fermat’s little theorem, is a multiple of p. Hence, there
exists an element η ∈ F of multiplicative order p, and we use this to define

G :=

p−1∑
k=1

(
k

p

)
ηk

This G is an element of F which is called Gauss sum.

Theorem 9. We have G2 ∈ Zq. More precisely,

G2 =

(
−1

p

)
p

Proof. By its definition,

G2 =

(
p−1∑
k=1

(
k

p

)
ηk

) (
p−1∑
l=1

(
l

p

)
ηl

)
=

p−1∑
k=1

p−1∑
l=1

(
kl

p

)
ηk+l

If k is fixed, then for each m ∈ S := {1, 2, . . . , p − 1}, there exists l ∈ S such that
l ≡ km (mod p). And according to Theorem 2, as m runs through the full system S,
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so does km. Moreover, since η has order p, we have ηl = ηkm. These facts allow us to
substitute the index l by m for the inner sum:

G2 =

p−1∑
k=1

p−1∑
m=1

(
k2m

p

)
ηk+km =

p−1∑
k=1

p−1∑
m=1

(
m

p

)
ηk(1+m)

Then we regroup the summands by switching the indices k and m:

G2 =

p−1∑
m=1

p−1∑
k=1

(
m

p

)
ηk(1+m) =

p−1∑
m=1

(
m

p

) p−1∑
k=1

ηk(1+m)

Now the summand corresponding to m = p − 1 is
(−1

p

)∑p−1
k=1 η

kp =
(−1

p

)
(p − 1) since

ηp = 1. Hence, it suffices to show that the remaining summands add up to
(−1

p

)
, i.e.,

that
p−2∑
m=1

(
m

p

) p−1∑
k=1

ηk(1+m) =

(
−1

p

)
To establish this last identity, first note that p - (1 + m) as m goes from 1 to p − 2,
hence by Theorem 2 again, both k and k(1 +m) run through a full system modulo p.
And again, combined with the fact that η is of order p, this implies that

p−2∑
m=1

(
m

p

) p−1∑
k=1

ηk(1+m) =

p−2∑
m=1

(
m

p

) p−1∑
k=1

ηk

Since the elements 1, η, η2, . . . , ηp−1 are distinct zeros of xp−1, we have the polynomial
factorization xp − 1 =

∏p−1
k=0(x − ηk) over F. In particular, equating the coefficient of

xp−1 from each side yields 0 = −
∑p−1

k=0 η
k, which implies that

∑p−1
k=1 η

k = −η0 = −1.
So now it remains for us to show that

p−2∑
m=1

(
m

p

)
= −

(
−1

p

)
and this readily follows from a rather well-known identity, i.e., that

∑p−1
m=1

(
m
p

)
= 0.

For the sake of completion, we ask you to prove this fact as a last exercise. ▽

Exercise 5. You are to demonstrate that

p−1∑
m=1

(
m

p

)
= 0

by proving that quadratic residues and non-residues are equally many in a given full
system modulo p.

Recall that F, being a field of characteristic q, enjoys the formula (x+y)q = xq+yq

for all x, y ∈ F (since the middle terms, being “multiples” of q, all vanish). By this,
and noting that q is odd,

Gq =

p−1∑
k=1

(
k

p

)q

ηqk =

p−1∑
k=1

(
k

p

)
ηqk =

p−1∑
k=1

(
q

p

)2(
k

p

)
ηqk =

(
q

p

) p−1∑
k=1

(
qk

p

)
ηqk
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But both k and qk vary through a full system modulo p, and η is of order p, so we are
allowed to replace the term qk by k without changing the value of the sum:

Gq =

(
q

p

) p−1∑
k=1

(
k

p

)
ηk =

(
q

p

)
G

Furthermore, the preceding theorem implicitly implies that G is not the zero element,
hence invertible, and that gives us (

q

p

)
= Gq−1

Finally, we apply the theorem once more, plus Euler’s criterion and
(−1

p

)
= (−1)

p−1
2 :

(
q

p

)
= (G2)

q−1
2 =

(
−1

p

)q−1
2

p
q−1
2 = (−1)

p−1
2

q−1
2

(
p

q

)
where the last equality (instead of a congruence) is justified in the prime field Zq. ▽

6 Postlude

Solution 1. It is clear that
(
ab
p

)
≡
(
a
p

)(
b
p

)
(mod p). However, both sides of the

congruence are either 1 or −1, and their difference is divisible by p > 2. That is
possible only when both are equal. Similarly also,

(−1
p

)
= (−1)

p−1
2 . And since odd

primes come in the form p = 4n+ 1 or p = 4n+ 3, we easily check that p−1
2

is even or
odd, respectively, according to these two classes.

Solution 2. We have 2H = {2, 4, . . . , p − 1}. Those congruent to r ∈ H are 2, 4, . . .
up to 2

⌊
p−1
4

⌋
, while the rest to −r. Hence,

n =
p− 1

2
−
⌊
p− 1

4

⌋
We show that (−1)n = (−1)

p2−1
8 by comparing the parity of n and of p2−1

8
in the four

cases that complete the proof:

1. Let p = 8k + 1. Then n = 4k − 2k is even and so is p2−1
8

= 8k2 + 2k.

2. Let p = 8k + 3. Then n = (4k + 1)− 2k is odd and so is p2−1
8

= 8k2 + 6k + 1.

3. Let p = 8k + 5. Then n = (4k + 2)− (2k + 1) is odd as is p2−1
8

= 8k2 + 10k + 3.

4. Let p = 8k + 7. Then n = (4k + 3)− (2k + 1) is even as is p2−1
8

= 8k2 + 14k + 6.

Solution 3. Let us assume that if p ≡ ±q (mod 4a), then
(
a
p

)
=
(
a
q

)
. There are four

cases in which we must verify that the reciprocity law holds:

1. Let p%4 = 1 and q%4 = 1, so that p− q = 4a. Then(
q
p

)
=
(−1

p

)(
q
p

)
=
(−q

p

)
=
(
p−q
p

)
=
(
4a
p

)
=
(
a
p

)
=
(
a
q

)
=
(
4a
q

)
=
(
p−q
q

)
=
(
p
q

)
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2. Let p%4 = 1 and q%4 = 3, so that p+ q = 4a. Then(
q
p

)
=
(
p+q
p

)
=
(
4a
p

)
=
(
a
p

)
=
(
a
q

)
=
(
4a
q

)
=
(
p+q
q

)
=
(
p
q

)
3. Let p%4 = 3 and q%4 = 1, so that p+ q = 4a. Then(

q
p

)
=
(
p+q
p

)
=
(
4a
p

)
=
(
a
p

)
=
(
a
q

)
=
(
4a
q

)
=
(
p+q
q

)
=
(
p
q

)
4. Let p%4 = 3 and q%4 = 3, so that p− q = 4a. Then

−
(
q
p

)
=
(−1

p

)(
q
p

)
=
(−q

p

)
=
(
p−q
p

)
=
(
4a
p

)
=
(
a
p

)
=
(
a
q

)
=
(
4a
q

)
=
(
p−q
q

)
=
(
p
q

)
Conversely, let us assume the reciprocity law, and suppose that p ≡ ±q (mod 4a). To
show

(
a
p

)
=
(
a
q

)
, it suffices to consider a a prime number, due to the multiplicative

property of the Legendre symbol proved in Exercise 1. Moreover, the case a = 2 is
already done in Exercise 2, hence we now assume that a is an odd prime. Note that
p ≡ ±q (mod a) and p ≡ ±q (mod 4), so we consider the four cases again:

1. Let p%4 = 1 and q%4 = 1, so that p ≡ q (mod a). Then(
a
p

)
=
(
p
a

)
=
(
q
a

)
=
(
a
q

)
2. Let p%4 = 1 and q%4 = 3, so that p ≡ −q (mod a). Then(

a
p

)
=
(
p
a

)
=
(−q

a

)
=
(−1

a

)(
q
a

)
= (−1)

a−1
2

(
a
q

)
(−1)

a−1
2 =

(
a
q

)
3. Let p%4 = 3 and q%4 = 1, so that p ≡ −q (mod a). Then(

a
q

)
=
(
q
a

)
=
(−p

a

)
=
(−1

a

)(
p
a

)
= (−1)

a−1
2

(
a
p

)
(−1)

a−1
2 =

(
a
p

)
4. Let p%4 = 3 and q%4 = 3, so that p ≡ q (mod a). Then(

a
p

)
=
(
p
a

)
(−1)

a−1
2 =

(
q
a

)
(−1)

a−1
2 =

(
a
q

)
(−1)

a−1
2 (−1)

a−1
2 =

(
a
q

)
Solution 4. The fact that cosx is an even function while sinx is odd gives us

e2πix − e−2πix = cos 2πx+ i sin 2πx− cos(−2πx)− i sin(−2πx) = 2i sin 2πx

Hence f(x) = 0 if and only if sin 2πx = 0, i.e., 2x ∈ Z.
Solution 5. Choose the full system S = {±1,±2, . . . ,±p−1

2
} modulo p. We know that

x2 ≡ m (mod p) has a solution if and only if m ∈ {x2 | x ∈ S}. Since (±x)2 = x2,
we can have at most p−1

2
quadratic residues. On the other hand, 12, 22, . . . , (p−1

2
)2

are all distinct modulo p, because with p being a prime, x2 ≡ y2 (mod p) implies
x ≡ ±y (mod p) for any x, y ∈ S. Hence, there are exactly p−1

2
quadratic residues.

7 In Memoriam

Fermat (1601–1665)
Euler (1707–1783)

Lagrange (1736–1855)
Legendre (1752–1833)

Gauss (1777–1855)
Eisenstein (1823–1852)


