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FROM GROUPS TO GALOIS

Amin Witno

These notes1 have been prepared for the students at Philadelphia University (Jor-
dan) who are taking the Math 342–442 series of Abstract Algebra. Topics in group
theory are covered in the first thirteen chapters, followed by another thirteen chapters
on rings and fields. The remaining chapters are an attempt to introduce Galois theory
as an independent reading project. Outline notes are more like a revision. No student
is expected to fully benefit from these notes unless they have regularly attended the
lectures.

1 Groups
By a binary operation ⋆ on a set, we mean a function taking each ordered pair a, b to
another element in the set which shall be denoted by a⋆b. The word ordered used here
implies that in general a ⋆ b ̸= b ⋆ a.
Definition. A group G is a set together with a binary operation ⋆ on G which satisfies
the following three axioms.

1) For every elements a, b, c ∈ G, we have a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

2) There exists e ∈ G such that a ⋆ e = a = e ⋆ a hold for every element a ∈ G.

3) For each element a ∈ G, there exists b ∈ G satisfying a ⋆ b = e = b ⋆ a.

Remark. Condition (1) in other words says that the operation ⋆ is associative. An
element e satisfying condition (2) is called an identity element of G. We shall soon see
that a group has exactly one identity element. In (3) we call b an inverse of a in G.
We shall also prove that every a ∈ G has a unique inverse.
Example. We give several examples of what a group might look like.

1) The set of integers Z together with ordinary addition, which is known to be asso-
ciative, is a group. The number e = 0 is an identity element of Z and the inverse
of any integer a in this case is −a.
Similarly also, under addition, the following sets each form a group: the rational
numbers Q, the real numbers R, and the complex numbers C. From now on we
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shall simply say the group Z, refering to the group of integers under addition; and
likewise with the groups Q, R, and C.

2) The set of nonzero rational numbers Q∗ is a group under the usual multiplication.
Its identity element is e = 1 and each nonzero rational number a/b has inverse
b/a. So do we have the groups R∗ and C∗ of nonzero numbers, respectively real
and complex, under multiplication. However, note that Z∗, the set of nonzero
integers, is not a group under multiplication because, for instance, 2 has no inverse
in it. (Why?) Henceforth, the groups Q∗, R∗, and C∗ are always understood to
be the groups of nonzero rational, real, and complex numbers, respectively, under
multiplication.

3) The set {0} under addition is a group, where 0 is the identity and only element
of G. Essentially this is the only kind of a group with one element, denoted by
G = {e}, and it is called the trivial group.

4) We can have a group with two elements, G = {e, a}, where e is identity and where
the binary operation is defined by a ⋆ a = e. You can check that it does satisfy the
three axioms of a group.

5) The set M(2,R) of 2×2 matrices with real entries is a group under matrix addition.

Can you identify the identity element and the inverse of
(
a b
c d

)
∈M(2,R)?

Similarly, the set M(n, S) of n× n matrices over S under matrix addition forms a
group, where S may be the set of integers, rationals, or complex numbers.

6) The set GL(2,R) of 2×2 matrices with nonzero determinants is also a group under
matrix multiplication. We know from linear algebra that matrix multiplication is
associative. The identity element here is

(
1 0
0 1

)
, and recall that having a nonzero

determinant is equivalent to being invertible.
Definition. We call the binary operation ⋆ commutative if a ⋆ b = b ⋆ a for all. In that
case the group G is called abelian. The examples given above are all abelian groups,
except the last one is non-abelian since matrix multiplication is not commutative.
Proposition 1.1. Let G be a group with a given binary operation.
1) There is exactly one identity element in G.

2) Each a ∈ G has a unique inverse in G.
Proof. Suppose there were two identity elements, e and f . Then e ⋆ f = f since e is
identity, while at the same time e ⋆ f = e as f is identity. Hence e = f . This proves
(1). For (2) assume a had two inverses b and c. Then a ⋆ b = a ⋆ c = e. Operate both
sides by b from the left and then apply associativity to get

b ⋆ (a ⋆ b) = b ⋆ (a ⋆ c)

(b ⋆ a) ⋆ b = (b ⋆ a) ⋆ c

e ⋆ b = e ⋆ c

b = c

This shows that a can have only one inverse. ▽
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Remark. Now it makes sense to speak of the identity element of a group, which is almost
always denoted by e, and of the inverse of an element a, denoted by a−1. Moreover,
for convenience we shall write ab instead of a ⋆ b, and in particular, let a2 = a ⋆ a. To
avoid confusion, however, when the operation is actually addition, we prefer to write
a + b instead of ab, as well as −a instead of a−1. It is also clear that by associativity
we may write the product abc or a1a2a3 · · · an without the necessity of brackets.

Proposition 1.2. For any elements in a group, the following statements hold.

1) (a−1)−1 = a

2) (ab)−1 = b−1a−1

3) ab = ac implies b = c

4) ba = ca implies b = c

Proof. In class. ▽

Remark. Properties (3) and (4) above go by the name left and right cancellation laws,
respectively. We should not assume that cancellation laws always apply unless we know
that we are dealing with group elements. We have, for example,(

0 1
0 2

)(
1 2
2 4

)
=

(
2 0
0 2

)(
1 2
2 4

)
=

(
2 4
4 8

)
seemingly contradicting (4). Can you account for this false counter-example?

Theorem 1.3. If G and H are two groups, with their respective binary operations,
then the set G ×H = {(g, h) | g ∈ G, h ∈ H} is a group under the operation defined
by (g, h)(g′, h′) = (gg′, hh′). The name for this group is the direct product of G and H.

Proof. Exercise. ▽

Exercise 1. Complete this homework set before we continue to the next section.
1) Prove that G is a group under the given binary operation ⋆.

a) G = {3n | n ∈ Z}; a ⋆ b = a+ b for all a, b ∈ G
b) G = {2n ∈ Q | n ∈ Z}; a ⋆ b = a× b for all a, b ∈ G
c) G = {A ∈M(2,Z) | detA = ±1}; A ⋆ B = A× B for all A,B ∈ G
d) G = {x ∈ R | x ̸= −1}; a ⋆ b = a+ b+ ab for all a, b ∈ G

2) Prove that “the mixed cancellation law” ab = ca→ b = c for all a, b, c ∈ G holds if
and only if the group G is abelian.

3) Prove that a group G is abelian if and only if (ab)2 = a2b2 for all a, b ∈ G.
4) Let G be a group. Prove that if a2 = e for all a ∈ G, then G is abelian.
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2 The Group Zn
This section is devoted to the presentation of a group with a finite number of elements
and which is called the modular integers. We assume a knowledge from set theory
concerning an equivalence relation and its equivalence classes.
Definition. Fix an integer n > 0. Define two integers a, b to be congruent mod n when
a− b = nk for some integer k. We denote this relation by a ≡ b (modn) and show that
it is an equivalence relation over Z:

1) reflexive: a ≡ a (modn) since a− a = nk with k = 0.

2) symmetric: a ≡ b (modn) implies b ≡ a (modn) because a− b = nk implies b− a =
nh with h = −k.

3) transitive: a ≡ b (modn) and b ≡ c (modn) imply a ≡ c (modn) because a−b = nk
and b− c = nh imply a− c = a− b+ b− c = nj with j = k + h.

Now let the equivalence classes under this relation be called congruence classes, where
for each a ∈ Z we denote its congruence class by

[a]n = {b ∈ Z | b ≡ a (modn)}
= {b ∈ Z | b− a = nk}
= {nk + a | k ∈ Z}

The following results follow from the fact about equivalence classes.

1) a ∈ [a]n for each a ∈ Z, and b ∈ [a]n if and only if a ≡ b (modn).

2) [a]n = [b]n if and only if a ≡ b (modn).

3) [a]n ∩ [b]n = ϕ if and only if a ̸≡ b (modn).

4)
∪
{ [a]n | a ∈ Z} = Z.

It also means that each integer belongs to exactly one congruence class, i.e., the con-
gruence classes partition the set Z. Now we will be interested in knowing how many
distinct congruence classes we have. For that we assume the following principle, called
the Division Algorithm.

Theorem 2.1 (The Division Algorithm in Z). Given two integers a and n > 0 there
exist integers q and r such that a = qn+ r and 0 ≤ r ≤ n− 1.

This principle is really what we call the long division method of dividing an integer
by another. For example dividing 47 by 5 gives us 9 (quotient) and remainder 2, hence
47 = 9× 5 + 2. This remainder r clearly has to be smaller than the divisor n, else the
long division process must continue. In particular r = 0 if and only if a = nk for some
k ∈ Z, in which case a ≡ 0 (modn). More generally, following the above theorem, we
have a ≡ r (modn).

Proposition 2.2. For a given n > 0, there are exactly n congruence classes of Z given
by [0]n, [1]n, [2]n, . . . , [n− 1]n.



WON 6 – From Groups to Galois 5

Proof. By the Division Algorithm, each integer a belongs to one of these classes, hence
there are at most n of them. To complete the proof we show that these n classes are all
distinct. If it were not so then two of them, say 0 ≤ i < j ≤ n− 1 satisfy the relation
i ≡ j (modn), or j − i = nk, which is impossible as 1 ≤ j − i ≤ n− 1. ▽

Definition. The set of modular integers Zn is the set consisting of the n congruence
classes under congruence mod n:

Zn = { [0]n, [1]n, [2]n, . . . , [n− 1]n}

And then we define a binary operation + on this set, called addition mod n, by letting

[a]n + [b]n = [a+ b]n

We have to show first that this is well-defined, meaning that different choices of
a, b for the same classes [a]n, [b]n should not yield a different sum. This follows since
[a]n = [a′]n and [b]n = [b′]n imply a−a′ = nk and b− b′ = nh hence (a+ b)− (a′+ b′) =
n(k + h), thus a+ b ≡ a′ + b′ (modn) and therefore

[a′]n + [b′]n = [a′ + b′]n = [a+ b]n = [a]n + [b]n

We are now ready to prove the main result.

Theorem 2.3. The set Zn is an abelian group under addition mod n.

Proof. The commutative property is inherited from the ordinary addition used in the
definition. Concerning the requirements to be a group, we verify:

1) For every three classes, [a]n + ([b]n + [c]n) = [a]n + [b + c]n = [a + (b + c)]n =
[(a+ b) + c]n = [a+ b]n + [c]n = ([a]n + [b]n) + [c]n.

2) The identity element of Zn is [0]n since [a]n+[0]n = [a+0]n = [a]n for all [a]n ∈ Zn.

3) For each [a]n ∈ Zn, we have −[a]n = [−a]n since [a]n + [−a]n = [a− a]n = [0]n. ▽

Remark. From now on, we shall simplify the notations quite drastically. We write
Zn = {0, 1, 2, . . . n − 1} while we really mean that each element is a congruence class
mod n—which is an infinite set of integers! From now on let us agree that the group
Zn refers to this group of modular integers under addition mod n.
Example. With n = 4 we have Z4 = {0, 1, 2, 3} where the addition mod 4 produces the
following multiplication table—just a name, despite the fact that the operation here is
addition! To avoid confusion, a multiplication table is better called a Cayley table.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

To avoid ambiguity, instead of writing 2+ 3 = 1 (which really means [2]4 + [3]4 = [5]4)
we may sometimes write 2 +4 3 = 1, or alternatively 2 + 3 ≡ 1 (mod 4).

Exercise 2. Complete this homework set before we continue to the next section.
1) Draw the Cayley table for the group (a) Z5 (b) Z2 × Z2 (c) Z2 × Z3 (d) Z3 × Z4.
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3 The Group Un

We continue with the example of Zn but this time we introduce a different operation:
multiplication mod n. For [a]n, [b]n ∈ Zn we define [a]n[b]n = [ab]n. As before we show
first that this is well-defined. Let [a]n = [a′]n and [b]n = [b′]n. Then a = a′ + nk and
b = b′ + nh, hence ab = a′b′ + n(a′h+ b′k + nkh), that is ab ≡ a′b′ (modn). Thus

[a′]n[b
′]n = [a′b′]n = [ab]n = [a]n[b]n

Once again we return to the simplified notation Zn = {0, 1, 2, . . . , n− 1}. For example
with n = 4, we have 2× 3 ≡ 2 (mod 4). The complete table of multiplication mod 4 in
Z4 is given below.

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

We can see that in general 1 acts as identity, in which case 0 and 2 have no inverse
in Z4. In fact, Zn is not a group under this operation, but we shall proceed to find a
subset of Zn which does form a group under multiplication mod n.
Definition. Two integers m,n are said to be relatively prime when they have no common
factors larger than 1. For example 12 and 25 are relatively prime, but 12 and 27 are
not since they have a common factor of 3.

Lemma 3.1. The integers m,n are relatively prime if and only if mx + ny = 1 for
some integers x, y.

Proof. Let d be a common factor of m and n. This means that both m/d and n/d
are integers, hence the quantity mx + ny is a multiple of d for any integers x, y. In
particular if mx+ny = 1 then d divides 1, hence d = ±1 and m,n are relatively prime.

Conversely, suppose m,n are relatively prime. Let L = {mx + ny | x, y ∈ Z}
and let c = mx0 + ny0 be the least positive element in L. We claim that c divides
m. To see why, use the Division Algorithm: m = qc + r with 0 ≤ r ≤ c − 1. Then
r = m − qc = m − q(mx0 + ny0) = m(1 − qx0) + n(−qy0) ∈ L. This is impossible as
c is supposedly the least, unless r = 0. By symmetry, we conclude that c divides n as
well. Being a common factor of m and n, then c = 1, hence mx0 + ny0 = 1. ▽

Note that n is relatively prime to m if and only if n is relatively prime to every
integer a ∈ [m]n. This is true since if a = nk +m, then mx + ny = 1 if and only if
ax+ n(y − kx) = 1.

Corollary 3.2. The integers m,n are relatively prime if and only if there exists an
integer b such that mb ≡ 1 (modn), in which case b is also relatively prime to n.

Proof. Note that the equation mx+ ny = 1 is equivalent to [m]n[x]n = [1]n in Zn. ▽

Lemma 3.3. Suppose n is relatively prime both to m and to m′. Then n is relatively
prime to mm′.
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Proof. Let mx+ny = 1 and m′x′+ny′ = 1 for some integers x, y, x′, y′. Multiply these
two equations together:

mm′(xx′) + n(mxy′ +m′x′y + nyy′) = 1

and by the lemma, this means mm′ and n are relatively prime. ▽

Definition. Let Un denote the subset of Zn consisting of the classes of m for which m
is relatively prime to n.

For example, U10 = {1, 3, 7, 9}. We are now ready to show that this is the subset
which forms a group under multiplication mod n.

Theorem 3.4. The set Un is an abelian group under multiplication mod n.

Proof. The lemma shows that the product of two elements in Un is again in Un. As-
sociativity and commutativity follow from those of ordinary multiplication used in the
definition. The integer 1 is relatively prime to n and [1]n is the identity element of Un.
Lastly, the lemma shows that each element of Un has an inverse element. ▽

Example. The group U10 = {1, 3, 7, 9} has Cayley table given below.

× 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Remark. The elements in Zn which have a multiplicative inverse, i.e., those that are
relatively prime to n, are otherwise called the units of Zn—thus the notation for Un.
Henceforth we simply say the group Un to refer to this group of units in Zn, where the
operation is understood multiplication mod n.

Lemma 3.5 (Euclid’s Lemma). If m and n are relatively prime, and mk ≡ 0 (modn)
for some integer k, then k ≡ 0 (modn).

Proof. Exercise. ▽

Exercise 3. Complete this homework set before we continue to the next section.
1) Construct the Cayley table for the group (a) U9 (b) U11 (c) Z2 × U8 (d) U12 × Z3.
2) Find a−1 for the group element a ∈ G: (a) 7 ∈ U9 (b) 5 ∈ U11 (c) (1, 3) ∈ Z3 × U8

(d) (11, 2) ∈ U12 × Z4.
3) Let Z∗

n = {a ∈ Zn | a ̸= 0}. Prove that Z∗
n is a group under multiplication mod n

if and only if n is a prime. (Note: a prime number is an integer larger than 1 that
cannot be factored into smaller numbers.)

4) Suppose that m and n are relatively prime. If k ≡ 0 (modm) and k ≡ 0 (modn),
prove that k ≡ 0 (modmn).
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4 Subgroups
Definition. A subset H of a group G is called a subgroup of G if H is itself a group
under the same binary operation inherited from G.
Example. We illustrate the idea with several examples.

1) We know that the sets Z, Q, R, C are all groups under addition. In this case Z is
a subgroup of Q, which is a subgroup of R, which is a subgroup of C.

2) The set Q∗ under multiplication is a group and a subgroup of R∗. The subset Z∗ is
not a subgroup of Q∗ because it is not a group under multiplication.

3) The set Q+ of positive rational numbers under multiplication is a subgroup of Q∗.
So is R+, the set of positive real numbers, a subgroup of R∗.

4) The subset 2Z of even numbers is a subgroup of Z under addition. You can verify
that adding two even numbers gives another even number, and that the three group
axioms hold in 2Z.

5) The set {1,−1} forms a group under multiplication, so it is a subgroup of the
group Q∗. Although {1,−1} is also a subset of Z∗, we cannot say that {1,−1} is a
subgroup of Z∗ because Z∗ is not a group under multiplication.

6) Every group is a subgroup of itself.

7) Every group has a trivial subgroup consisting of only the identity element {e}.

8) The subset Un is not a subgroup of Zn even though both of them are groups, because
they are defined with different binary operations.

9) The set M(2,Z) is a subgroup of M(2,R) under matrix addition.

10) The group GL(2,R) under matrix multiplication has a subgroup given by SL(2,R)
consisting of 2× 2 matrices with determinant ±1.

Lemma 4.1. Let H be a subgroup of a group G.

1) The identity element of H is that of G.

2) For each a ∈ H, its inverse in H is the same a−1 ∈ G.

Proof. In class. ▽

Theorem 4.2. A non-empty subset H of a group G is a subgroup if and only if
ab−1 ∈ H whenever a, b ∈ H.

Proof. Necessity is clear. Suppose the required condition is satisfied inH. Associativity
in H is inherited from G. There is at least one element a ∈ H, hence aa−1 = e ∈ H.
This is the identity element in H according to the lemma. Also for each a ∈ H we have
ea−1 = a−1 ∈ H and this is the inverse of a in H by the lemma. Last but not least,
we have to verify that a, b ∈ H implies ab ∈ H. But since b ∈ H implies b−1 ∈ H then
a, b ∈ H implies a(b−1)−1 = ab ∈ H. ▽
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Example. The set nZ = {nk | k ∈ Z}, under addition, obeys the condition of Theorem
4.2, since nk+(−nj) = n(k−j) ∈ nZ. Thus nZ is a subgroup of Z. We call the elements
of nZ multiples of n. Note that multiples of n are really members of the congruence
class [0]n. In particular, 2Z is the subgroup of even numbers under addition.
Remark. Theorem 4.2 is traditionally called the One-Step Subgroup Test. Alternately,
one can perform a subgroup test using the Two-Step Subgroup Test, as follows.

Theorem 4.3. A non-empty subset H of a group G is a subgroup if and only if (1)
ab ∈ H for all a, b ∈ H and (2) x−1 ∈ H for all x ∈ H.

Proof. In class. ▽

Proposition 4.4. If H and K are subgroups of G then H ∩K is also a subgroup of
G. More generally, the intersection of any collection of subgroups is again a subgroup.

Proof. Exercise. ▽

Exercise 4. Complete this homework set before we continue to the next section.
1) Prove that H is a subgroup of G for the given H ⊆ G: (a) {5n | n ∈ Z} ⊆ Z (b)

{πn | n ∈ Z} ⊆ R∗ (c) {A | detA = ±1} ⊆ GL(2,R) (d) {a+bi | a2+b2 = 1} ⊆ C∗.
2) Let H be a finite non-empty subset of a group G. Prove that H is a subgroup if

and only if ab ∈ H for all a, b ∈ H.
3) Find a non-trivial example of a group H such that Z ⊆ H ⊆ Q.
4) For any a ∈ G, the centralizer of a in G is defined by C(a) = {x ∈ G | ax = xa}.

Show that C(a) is a subgroup of G, and conclude that the center of a group,
Z(G) = {x ∈ G | ax = xa for all a ∈ G} is also a subgroup of G, upon observing
that Z(G) =

∩
C(a) where the intersection is taken over all the elements a ∈ G.

5 Cyclic Groups
Definition. Let G be a group and a ∈ G. For each integer n > 0, we define an

recursively by a1 = a and an = an−1a. Moreover, let a0 = e and a−n = (a−1)n.

Proposition 5.1. The following statements hold, for every m,n ∈ Z.

1) a−n = (an)−1

2) aman = am+n = anam

3) (am)n = amn = (an)m

Proof. In class. ▽

Definition. Let G be a group and a ∈ G. We define the set ⟨a⟩ = {ak | k ∈ Z} and will
prove that this set is a subgroup of G, called the cyclic subgroup generated by a.

Theorem 5.2. For any element a ∈ G, the set ⟨a⟩ is an abelian subgroup of G.

Proof. Elements of ⟨a⟩ are of the form ak for some k ∈ Z. In particular a0 = e ∈ ⟨a⟩.
If aj, ak ∈ ⟨a⟩ then aj(ak)−1 = aja−k = aj−k ∈ ⟨a⟩. Hence ⟨a⟩ is a subgroup of G by
Theorem 4.2. Commutativity is given by the proposition. (How?) ▽
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Remark. When the operation in G is addition, we have ak = a + a + · · · + a (with
k terms). In that case, we prefer the notation ka to ak. For example, the subgroup
2Z of Z under addition is really the cyclic subgroup generated by 2, and in general,
nZ = ⟨n⟩.
Definition. Let G be a group. If there exists an element a ∈ G such that ⟨a⟩ = G, then
we call the group G cyclic and call a a generator of G.

We have seen that a cyclic group is necessarily abelian but, of course, we do not
expect all abelian groups to be cyclic.
Example. The group Z under addition is a cyclic group generated by 1. Similarly
Zn = ⟨1⟩ for all n > 0, under addition mod n. Another example is U5 = {1, 2, 3, 4}
under multiplication mod 5, where 2 and 3 are both generators.
Theorem 5.3. Any subgroup of a cyclic group is again cyclic.
Proof. Let G = ⟨a⟩ = {ak | k ∈ Z} and let H be a subgroup of G. If H = {e} then it is
cyclic, trivially H = ⟨e⟩. Otherwise let n be the least positive integer for which an ∈ H.
We claim that H = ⟨an⟩. Well, clearly ⟨an⟩ ⊆ H. Now for each am ∈ H we use the
Division Algorithm to write m = qn + r with 0 ≤ r ≤ n − 1. Then aqn = (an)q ∈ H
and am(aqn)−1 = am−qn = ar ∈ H. But n being the least exponent, this is not possible
unless r = 0. Hence am = aqn = (an)q ∈ ⟨an⟩ and it follows that H = ⟨an⟩. ▽

Example. Since Z is cyclic under addition, we conclude that all its subgroups are cyclic,
hence of the form ⟨n⟩ = nZ. In other words, any subgroup of Z under addition must
be the group of multiples of some integer n. Moreover, as shown in the proof, n is the
least positive integer in this subgroup. For example, knowing that the intersection of
subgroups is again a subgroup, we have ⟨4⟩∩⟨6⟩ = ⟨12⟩ because 12 is the least positive
common multiple of 4 and 6.
Theorem 5.4. As subgroups of Z, if m,n are relatively prime then ⟨m⟩∩ ⟨n⟩ = ⟨mn⟩.
Proof. Let ⟨c⟩ = ⟨m⟩ ∩ ⟨n⟩ where c is the least positive integer in this subgroup. Then
by definition c = mk for some integer k, and at the same time also c is a multiple of n.
But m,n relatively prime implies, by Euclid’s Lemma, that k is multiple of n. Hence
c is a multiple of mn. Being the least, c ≤ |mn| so c = |mn| and ⟨c⟩ = ⟨mn⟩. ▽

Remark. Unlike Zn, the group Un is not always cyclic. In number theory, a generator
for Un, if cyclic, goes by the name primitive root. It can be shown that primitive roots
exist if and only if n = 2, 4, pk, or 2pk, where p is any prime number larger than 2 and
k is any positive integer. So these are the only values of n for which Un is a cyclic
group. What is a prime number?
Definition. An integer p > 1 is prime if it is not a multiple of any integer n in the
range 1 < n < p.

The first few prime numbers are 2, 3, 5, 7, 11, 13, . . . Note that a prime p is always
relatively prime to all the numbers 1, 2, 3, . . . , p− 1, hence Up = {1, 2, 3, . . . , p− 1}.
Exercise 5. Complete this homework set before we continue to the next section.
1) Find all the generators for the cyclic group (a) Z7 (b) Z8 (c) U9 (d) U10.
2) Prove cyclic or not cyclic, for the group (a) U15 (b) Z3×U5 (c) Z2×Z4 (d) U10×U6.
3) Give an example where G and H are both cyclic groups such that G×H is cyclic,

and another example where G×H is not cyclic.
4) If a group has only 3 elements, prove that it must be cyclic.
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6 Cosets
Definition. Let H be a subgroup of a group G. For elements a, b ∈ G, define the
relation a ∼ b if and only if ab−1 ∈ H.

We will show that this ∼ defines an equivalence relation on G. For example if
G = Z with addition and H = ⟨n⟩, then a ∼ b if and only if a − b ∈ ⟨n⟩ = [0]n. But
this is the relation a ≡ b (modn) we saw in Section 2.

Proposition 6.1. Let H be a subgroup of a group G, and write a ∼ b if and only if
ab−1 ∈ H. Then the set R = {(a, b) ∈ G×G | a ∼ b} is an equivalence relation on G.

Proof. In class. ▽

Definition. We call the equivalence class of a ∈ G under the relation ∼ the coset of a
in G with respect to the subgroup H, which is given by

Ha = {b ∈ G | b ∼ a}
= {b ∈ G | ba−1 ∈ H}
= {b ∈ G | ba−1 = h, h ∈ H}
= {b ∈ G | b = ha, h ∈ H}
= {ha | h ∈ H}

Hence, for the relation a ≡ b (modn) on Z, where H = ⟨n⟩, the cosets come in the
form ⟨n⟩a = {h + a | h ∈ ⟨n⟩} = {nk + a | k ∈ Z} = [a]n, i.e., the congruence classes
mod n. From the properties of equivalence classes, we conclude that these cosets form
a partition for the group G. For one thing this means that every element a ∈ G belongs
to exactly one coset. Other facts are recorded below.

Proposition 6.2. Let H be a subgroup of a group G. Let a, b ∈ G.

1) a ∈ Ha and, moreover, b ∈ Ha if and only if ab−1 ∈ H.

2) Ha = Hb if and only if ab−1 ∈ H. In particular, Ha = H if and only if a ∈ H.

3) Ha ∩Hb = ϕ if and only if ab−1 ̸∈ H.

4)
∪
{Ha | a ∈ G} = G.

Definition. How many different cosets are there? Denote this quantity by [G:H] and
call it the index of H in G, if it is finite, otherwise let [G:H] = ∞. Also denote the
number of elements in G by |G| and call this quantity the order of G. We say the group
G is finite or infinite depending on |G|, and for the latter case we write |G| = ∞.
Example. Let G = Z12 and H = ⟨9⟩ = {9, 6, 3, 0}. We can check that [Z12:⟨9⟩] = 3:

⟨9⟩+ 0 = {9, 6, 3, 0}
⟨9⟩+ 1 = {10, 7, 4, 1}
⟨9⟩+ 2 = {11, 8, 5, 2}

and note that any other coset of the form ⟨9⟩ + a is a duplicate of one of these three,
e.g., ⟨9⟩+ 5 = {2, 11, 8, 5} = ⟨9⟩+ 2.
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Lemma 6.3. LetG be a group andH a subgroup. For each a ∈ G, we have |Ha| = |H|.

Proof. Each element in Ha is of the form ha for some h ∈ H. Moreover ha = h′a
implies h = h′ by the cancellation law. Hence either both |Ha| and |H| are infinite, or
both finite and equal. ▽

Definition. A nonzero integer n divides m if m = nk for some integer k. This is
equivalent to having m a multiple of n, i.e., m ∈ [0]n = ⟨n⟩ when n > 0. We also say,
in this case, that m is divisible by n, or that n is a divisor or a factor of m.

Theorem 6.4 (Lagrange’s Theorem). The order of any subgroup H of a finite group
G is a divisor of |G|. In particular |G|/|H| = [G:H].

Proof. Let G be a finite group and H a subgroup of G. There can be only finitely
many cosets in G with respect to H, say k = [G:H] of them. By the lemma we have
|H|k = |G|, hence |H| divides |G|. ▽

Corollary 6.5. A group of prime order is cyclic and, furthermore, any non-identity
element is a generator.

Proof. Let G be a group such that |G| = p, a prime and let a ∈ G. By Lagrange’s
Theorem the order of ⟨a⟩ divides |G|. But |⟨a⟩| ̸= 1 unless a = e, otherwise |⟨a⟩| = p
and so ⟨a⟩ = G. ▽

Definition. Let G be a group and a ∈ G. The order of a, denoted by |a|, is the least
integer n > 0 such that an = e if such n exists, otherwise let |a| = ∞.

Under multiplication mod 5, for instance, we have 22 ≡ 4, 23 ≡ 3, 24 ≡ 1; hence
|2| = 4 in the group U5.

Lemma 6.6. Let a be an element of a group G. Then |a| = |⟨a⟩|.

Proof. Assume first |a| = n, hence an = e. Let H = {a, a2, . . . , an} and claim that
⟨a⟩ = H. It suffices to show that all powers of a belong to H. Given am for any integer
m, we apply the Division Algorithm to write m = qn + r where 0 ≤ r ≤ n− 1. Then
am = (an)qar = ar ∈ H.

Next we show that the elements a, a2, . . . , an are all distinct. If ever we had aj = ak

with 1 ≤ j < k ≤ n, then ak−j = e, which is impossible as 0 < k − j < n while n is
supposedly the least number with the property an = e.

Thus we conclude |a| = n = |H| = |⟨a⟩|. As for the infinite case, note that if
aj = ak then aj−k = e. Thus |a| = ∞ implies that the elements a, a2, a3, . . . are all
distinct, and so ⟨a⟩ will be infinite as well. ▽

Corollary 6.7. The order of any element in a finite group G is a divisor of |G|.

Proof. Let a ∈ G and H = ⟨a⟩ in Lagrange’s theorem. Then |a| = |H| divides |G|. ▽

Corollary 6.8. Let G be a finite group and a ∈ G. Then a|G| = e.

Proof. Let |a| = n, which is finite since G is. We know that |G| = nk for some integer
k. Hence a|G| = (an)k = ek = e. ▽

Definition. For every integer n > 1, let ϕ(n) denote the number of positive integers up
to and relatively prime to n. In other words, ϕ(n) = |Un|.
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For example ϕ(10) = 4 since U10 = {1, 3, 7, 9}. Now if we let G = Un in the last
corollary, then we derive the Euler’s theorem of number theory. If in addition n = p, a
prime, then Up = {1, 2, . . . , p−1} and this is the special case of Fermat’s little theorem.

Theorem 6.9 (Euler’s Theorem). If a is relatively prime to a positive integer n, then
aϕ(n) ≡ 1 (modn).

Theorem 6.10 (Fermat’s Little Theorem). Let p be a prime and a be any integer
which is not a multiple of p. Then ap−1 ≡ 1 (mod p).

Exercise 6. Complete this homework set before we continue to the next section.
1) Compute [G:H] and identify all the cosets with respect to the subgroup H ⊆ G:

(a) ⟨9⟩ ⊆ Z12 (b) ⟨3⟩ ⊆ U13 (c) ⟨5⟩ ⊆ Z (d) ⟨(4, 5)⟩ ⊆ Z6×U6 (e) ⟨(3, 3)⟩ ⊆ U5×U8.
2) Compute |a| for the group element a ∈ G: (a) 7 ∈ Z12 (b) 5 ∈ U16 (c) (2, 2) ∈ Z8×Z6

(d) (2, 2) ∈ Z5 × U11

3) Prove that the group U17 × U19 is not cyclic.
4) Let H and K be two finite subgroups of G. Prove that if |H| and |K| are relatively

prime, then H ∩K = {e}.

7 Finite Cyclic Groups
In this section we seek to identify the order of each element of a given finite cyclic
group G. Since every subgroup of G is generated by one element, as G itself is, such
knowledge will also lead to the classification of all the subgroups of G.

Lemma 7.1. Let a ∈ G, not assumed cyclic. Then ak = e if and only if |a| divides k.

Proof. Let |a| = n and write k = qn + r with 0 ≤ r < n. We have ak = (an)qar = ar.
By the minimality of n, then ak = e if and only if r = 0. ▽

Definition. The greatest common divisor of two integers m and n, written gcd(m,n),
is the largest integer which divides both m and n. This quantity always exists (unless
m = n = 0) and is at least 1. In particular, gcd(m,n) = 1 if and only if m and n are
relatively prime.

Theorem 7.2. Suppose a ∈ G, not assumed cyclic, such that |a| = n. Then |am| =
n/ gcd(m,n).

Proof. Let |am| = k. Since ⟨am⟩ is a subgroup of ⟨a⟩, Lagrange’s theorem says that k
divides n, so we write k = n/d for some d. This d must be the largest divisor of n such
that (am)n/d = e. Meanwhile, the lemma requires that |a| = n divide m(n/d) = mk.
As n = dk, it follows that d must divide m. Thus d is the largest common divisor of
m and n with condition that amn/d = e. This condition actually holds for any divisor
of m because amn/d = (an)m/d = e; hence choosing d = gcd(m,n) yields the minimal
correct value of k, the order of am, i.e., k = n/ gcd(m,n). ▽

Corollary 7.3. Suppose that G = ⟨a⟩, of order n. Then G = ⟨am⟩ if and only if m
and n are relatively prime.

Proof. ⟨am⟩ = ⟨a⟩ if and only if |am| = |a| = n, if and only if gcd(m,n) = 1. ▽
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Corollary 7.4. Let m represent an integer as well as an element of Zn. Then Zn = ⟨m⟩
if and only if gcd(m,n) = 1, i.e., if and only if m ∈ Un.

Proof. Simply let G = Zn = ⟨1⟩ in the above corollary. ▽

Example. Consider Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The elements relatively prime to 10
are 1, 3, 7, 9. For each of these, we have

⟨1⟩ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
⟨3⟩ = {3, 6, 9, 2, 5, 8, 1, 4, 7, 0}
⟨7⟩ = {7, 4, 1, 8, 5, 2, 9, 6, 3, 0}
⟨9⟩ = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0}

Note that other elements will not generate the group, e.g., ⟨4⟩ = {4, 8, 2, 6, 0}.

Theorem 7.5. Let G be a cyclic group of order n, and let d be any positive divisor of
n. Then G has a unique subgroup of order d.

Proof. Let a ∈ G such that G = ⟨a⟩. By Lagrange’s theorem, we may let dk = n for
some integer k. Hence, by Theorem 7.2 we have |ak| = n/k = d, thus the subgroup
H = ⟨ak⟩ of order d. If there were another (cyclic) subgroup ⟨am⟩ of order d, then
Theorem 7.2 again gives gcd(m,n) = k so k divides m, implying that am ∈ ⟨ak⟩ and
⟨am⟩ ⊆ H. Therefore, ⟨am⟩ = H as both have equal finite order. ▽

Theorem 7.6. Let G = ⟨a⟩, of order n. Including a, there are exactly ϕ(n) generating
elements of G. Moreover, for every positive divisor d of n, there exist exactly ϕ(d)
elements in G of order d.

Proof. Write G = {a, a2, . . . , an = e}. By Corollary 7.3, am generates G if and only if
m ∈ Un. Their number is given by |Un| = ϕ(n). Now if d divides n, say dk = n, then
|ak| = n/k = d. By the preceding lemma, every element of order d is a generator of
this subgroup ⟨ak⟩ of order d. By the same reasoning, there are ϕ(d) such elements. ▽

Remark. By Corollary 6.7, every element in such a group has order a divisor of n.
The above theorem then yields a known identity of number theory involving the phi-
function:

∑
ϕ(d) = n, where the sum is over all positive integers d that divide n.

Example. Since every subgroup of a cyclic group is again cyclic, all these results apply
to any finite cyclic group G as well as all its subgroups and its sub-subgroups. The
subgroup lattice is a way we can diagram these subgroup relations. The following is the
subgroup lattice for the group Z12. Note that ⟨1⟩ = Z12 and that ⟨12⟩ = ⟨0⟩ = {0}.

⟨1⟩

{{
{{
{{
{{

AA
AA

AA
AA

⟨2⟩

{{
{{
{{
{{

CC
CC

CC
CC

⟨3⟩

}}
}}
}}
}}

⟨4⟩

CC
CC

CC
CC

⟨6⟩

{{
{{
{{
{{

⟨12⟩
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Exercise 7. Complete this homework set before we continue to the next section.
1) Let G and H be two finite cyclic groups.

a) Prove that if gcd(|G|, |H|) = 1, then G×H is cyclic.
b) Prove that if gcd(|G|, |H|) > 1, then G×H is not cyclic.
c) If cyclic, prove that G×H = ⟨(a, b)⟩ if and only if G = ⟨a⟩ and H = ⟨b⟩.
d) If gcd(m,n) = 1, prove that ϕ(mn) = ϕ(m)ϕ(n) by letting G = Zm and H = Zn.

2) Count how many generators for the cyclic group (a) Z36 (b) U17 (c) U27 (d) Z5×U10.
3) Draw the subgroup lattice for the cyclic group (a) Z24 (b) Z4 × Z5 (c) U17 (d) U18.
4) Find all the elements a ∈ Z224 of order (a) 8 (b) 12 (c) 14 (d) 16.

8 Normal Subgroups
Had we defined the equivalence relation a ∼ b to be b−1a ∈ H then the coset of a would
have looked different, i.e., aH = {ah | h ∈ H}. We call such the left coset of a in G
with respect to the subgroup H, to be distinguished from the right coset Ha of the
previous section. This differentiation would not be necessary if G is abelian, in which
case aH = Ha for all a ∈ G, or if H is a normal subgroup, below.
Definition. Let G be a group. A subgroup N of G is called normal if aN = Na for
every a ∈ G.

For abelian groups, all subgroups are trivially normal. (Hence, normal subgroups
are special only in the non-abelian case.) The converse, however, is false: see Exercise
13.1 for an example of a non-abelian group whose subgroups are all normal.

Proposition 8.1. A subgroup N of G is normal if and only if ana−1 ∈ N for every
a ∈ G and n ∈ N .

Proof. Suppose N is normal. Then an ∈ aN = Na, hence an = n′a for some n′ ∈ N .
It follows that ana−1 = n′aa−1 = n′ ∈ N . Conversely, suppose that ana−1 ∈ N for
every a ∈ G and n ∈ N . Then

b ∈ Na ↔ ab−1 ∈ N

↔ b−1(ab−1)b ∈ N

↔ b−1a ∈ N

↔ b ∈ aN

which shows that Na = aN . ▽

Definition. For any subsets A and B of a group G, we define the product AB = {ab |
a ∈ A, b ∈ B}. In particular when B = {b} we write AB = Ab, which coincides with
the notion of a (right) coset when A is a subgroup. Note that associativity in G implies
that A(BC) = (AB)C for any three subsets A,B,C.

Lemma 8.2. Let N be a normal subgroup of G. Then for every a, b ∈ G,

1) NN = N

2) N(Na) = (Na)N = Na

3) (Na)(Nb) = N(ab)
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Proof. We have NN =
∪
{Nn | n ∈ N} = N , since for any subgroup (not necessarily

normal) Ha = H if and only if a ∈ H. Then
(Na)(Nb) = N(aN)b = N(Na)b = (NN)(ab) = N(ab)

In particular with b = e, (Na)N = Na and N(Na) = Na. ▽

Definition. With N a normal subgroup of G, let G mod N be the set of all cosets in
G with respect to N , which is written G/N = {Na | a ∈ G}. We also introduce the
operation (Na)(Nb) = N(ab) in this set G/N , which will then become a group of order
[G:N ]. The group G/N is called the quotient group or factor group of G mod N .
Theorem 8.3. For any normal subgroup N of a group G, the set G/N forms a group
under the operation (Na)(Nb) = N(ab) for every a, b ∈ G.
Proof. We show first that this operation is well-defined. Suppose that Na = Na2 and
Nb = Nb2. These are equivalent to having aa−1

2 , bb−1
2 ∈ N . Since N is normal, then

c = a2(bb
−1
2 )a−1

2 ∈ N . Hence aa−1
2 c = ab(a2b2)

−1 ∈ N , meaning that (ab) ∼ a2b2 and
so N(a)N(b) = N(ab) = N(a2b2) = N(a2)N(b2). Now for the group axioms:
1) Associative: Na((Nb)(Nc)) = (Na)N(bc) = N(a(bc)) = N((ab)c) = N(ab)N(c) =

(N(a)N(b))N(c).

2) Identity: The identity element in G/N is N = Ne.

3) Inverse: For each element Na ∈ G/N its inverse is given by N(a−1). ▽

Example. The group Z under addition is abelian, hence all its subgroups are normal.
Let N = ⟨2⟩, the subgroup of all even numbers. Then N + a = N if a is even. If a and
b are both odd then a − b is even and belongs to N , hence N + a = N + b. Thus the
quotient group Z/⟨2⟩ = {⟨2⟩, ⟨2⟩ + 1} = {e, o}, where e represents the coset of even
numbers [0]2 and o the coset of odd numbers [1]2. The Cayley table is,

+ e o
e e o
o o e

In the next section, we will see that this group is essentially Z2 in the sense of isomor-
phism. Also in general we will show that Z/⟨n⟩ ≈ Zn.
Example. We look at the group U7 and one of its subgroups, ⟨6⟩ = {1, 6}. There are
three cosets given by ⟨6⟩1 = ⟨6⟩, ⟨6⟩2 = {2, 5}, and ⟨6⟩3 = {3, 4}. These three form
the factor group U7/⟨6⟩ whose Cayley table, represented by 1, 2, 3, respectively, is
provided below. Can you identify this group with another familiar group?

× 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

Exercise 8. Complete this homework set before we continue to the next section.
1) Construct the Cayley table for the factor group G/H for each problem given in

Exercise 6.1. (Note that all those groups are abelian, hence normal subgroups.)
2) Prove that the subgroup SL(2,R) is normal in GL(2,R).
3) Let H be a subgroup of G. Prove that if [G:H] = 2, then H is normal.
4) Let G be a group. Prove that the center subgroup Z(G) is normal and that the

factor group G/Z(G) is either trivial or not cyclic.
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9 Group Isomorphisms
Definition. A function θ : G → G′ between two groups is called a homomorphism if
it satisfies θ(ab) = θ(a)θ(b) for every a, b ∈ G. In such a case, we define the range
θ(G) = {θ(a) | a ∈ G} and the kernel ker(θ) = {a ∈ G | θ(a) = e′}, where e′ denotes
the identity in G′.

We say that a homomorphism preserves the binary operation going from G into G′.
Note that the operation θ(a)θ(b) is that of G′, which is not distinguishable from that
of G in the notation but is not assumed the same.
Example. Let us illustrate this idea with a few examples.
1) Let θ : Z → Zn be given by θ(a) = [a]n. This is a homomorphism as [a + b]n =

[a]n + [b]n. We have ker(θ) = nZ and θ(Z) = Zn.

2) Let θ : Z → {±1} such that θ(n) = (−1)n. Then θ(a+b) = (−1)a+b = (−1)a(−1)b =
θ(a)θ(b), showing that θ is a homomorphism. Here, θ(Z) = {±1} and ker(θ) = ⟨2⟩.

3) Let θ : R → R∗ where θ(x) = ex. We have ex+y = exey hence θ is a homomorphism,
with θ(R) = (0,∞) and ker(θ) = {0}.

Proposition 9.1. Let θ : G → G′ be a homomorphism from a group G with identity
e to another group G′ with identity e′.
1) θ(e) = e′ and θ(a−1) = θ(a)−1 for every a ∈ G.

2) θ is one-to-one if and only if ker(θ) = {e}.

3) θ(G) is a subgroup of G′.

4) ker(θ) is a normal subgroup of G.
Proof. In class. ▽

Definition. A homomorphism θ : G→ G′ is called an isomorphism when θ is one-to-one
and onto, in which case we say that G and G′ are isomorphic, written G ≈ G′. The
meaning of onto is, of course, that θ(G) = G′.

Isomorphism really means that the two groups are essentially identical, except
for the different labeling of the elements. For example, consider the group with 2
elements, i.e., G = {e, a} in which a2 = e. We can see that G ≈ Z2 by identifying
θ(e) = 0 and θ(a) = 1. Another illustration, from Example (3) above, the group R
under addition is isomorphic to the sub-interval (0,∞) under multiplication, by way
of the homomorphism function θ(x) = ex, or the inverse θ−1(y) = ln y. Thus R ≈ R+.
Theorem 9.2. Any finite cyclic group of order n is isomorphic to Zn. Any infinite
cyclic group is isomorphic to Z.
Proof. Let G = ⟨a⟩ = {a0, a1, a2, . . . , an−1} where a ∈ G is of order n. Let θ : G→ Zn

be given by θ(ak) = k = [k]n. This is a homomorphism since

θ(akal) = θ(ak+l) = [k + l]n = [k]n + [l]n = θ(ak) + θ(al)

Moreover, θ is one-to-one as θ(ak) = [0]n if and only if k = 0 and ak = e. Lastly, θ is
clearly onto, establishing the isomorphism G ≈ Zn.

If on the other hand |a| = ∞, then simply define θ(ak) = k ∈ Z. By a very similar
argument, we can show that θ is an isomorphism and G ≈ Z. ▽
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Theorem 9.3 (The Fundamental Homomorphism Theorem). Let θ : G → G′ be a
homomorphism of groups. Then G/ ker(θ) ≈ θ(G).
Proof. We let H = ker(θ) and define the map Θ : G/H → θ(G) according to the rule
Θ(Ha) = θ(a). This map is well-defined, for if Ha = Hb then ab−1 ∈ H, leading to
e′ = θ(ab−1) = θ(a)θ(b)−1 and thus θ(a) = θ(b). It is also a homomorphism because

Θ((Ha)(Hb)) = Θ(H(ab)) = θ(ab) = θ(a)θ(b) = Θ(Ha)Θ(Hb)

as θ is. It is clear that Θ is onto and furthermore, the fact that θ(a) = θ(b) implies
Ha = Hb (How?) shows that Θ is one-to-one, hence an isomorphism. ▽

Example. The following are some examples of isomorphism between groups.
1) From Example (1) previously, Z/nZ ≈ Zn.

2) In particular from Example (2), Z/2Z ≈ {±1} ≈ Z2.

3) As a counter-example, we shall demonstrate why Z2 × Z2 is not isomorphic to Z4.
Note that every element α ∈ Z2 × Z2 meets the condition α2 = (0, 0), the identity
of this group. Therefore θ(α)2 = 0 ∈ Z4—if θ is a homomorphism. But then this θ
cannot be onto since Z4, being cyclic, contains an element of order 4.

Remark. Generally speaking, an isomorphism preserves algebraic structures of the one
group onto the other. Properties such as group order, being abelian or cyclic, existence
of a particular subgroup, etc., must agree between the two isomorphic groups. In the
example of Z2 × Z2 and Z4, the fact that one is cyclic and the other not is sufficient
evidence that no isomorphism can exist between the two groups.
Theorem 9.4 (Chinese Remainder Theorem). Suppose that m and n are relatively
prime positive integers. Then Zm × Zn ≈ Zmn.
Proof. Let θ : Z → Zm × Zn be defined by θ(a) = (a, a) = ([a]m, [a]n). The fact that
[a+ b] = [a] + [b] in each Zm and Zn makes this function an onto homomorphism. We
have ker(θ) = {a ∈ Z | a ∈ [0]m ∩ [0]n} = ⟨mn⟩ by Theorem 5.4. Hence Zm × Zn ≈
θ(Z) ≈ Z/⟨mn⟩ ≈ Zmn by the fundamental homomorphism theorem. ▽

Remark. The Chinese remainder theorem belongs to number theory. For an illustra-
tion, this theorem implies that the congruence a ≡ b (mod 12) is equivalent to the the
simultaneous pair a ≡ b (mod 3) and a ≡ b (mod 4). It also means that the congruences
x ≡ 5 (mod 7) and x ≡ 8 (mod 11) have a unique common solution in Z77.
Corollary 9.5. If m and n are relatively prime, then ϕ(mn) = ϕ(m)ϕ(n).
Proof. Note that (a, b) ∈ Zm×Zn is a unit element (i.e., invertible under multiplication)
if and only if a ∈ Um and b ∈ Un. This says that we have ϕ(m)ϕ(n) such units. Looking
at Zmn on the other hand, we know this number is equal to |Umn| = ϕ(mn). ▽
Exercise 9. Complete this homework set before we continue to the next section.
1) Let G be a group and let θ(a) = a−1 for all a ∈ G. Prove that θ is an isomorphism

on G if and only if G is abelian.
2) Let a ∈ G and θ : G → G be given by θ(x) = axa−1 for every x ∈ G. Prove that θ

is an isomorphism—this is called the inner automorphism of G induced by a.
3) Prove (a) U7 ≈ U9 ≈ U14 (b) R ≈ R+ (c) U15 ̸≈ U24 (d) Z4 × Z4 ̸≈ Z2 × Z8.
4) Prove the converse of the Chinese remainder theorem: if m and n are not relatively

prime, then Zm × Zn ̸≈ Zmn.
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10 Finite Abelian Groups
The main thing in this section is the classification of all abelian groups of a given order.
Such a task shall be carried out effectively by the fundamental theorem of finite abelian
groups, whose proof will be provided in a separate handout as a reading assignment.

Theorem 10.1 (The Fundamental Theorem of Finite Abelian Groups). Every finite
abelian group is isomorphic to the direct product of cyclic groups.

Before putting this theorem into action, we need to borrow from number theory
the fundamental theorem of arithmetic, which states that every positive integer n is a
unique product of powers of distinct primes, n =

∏
pkii . Note that powers of primes in

such an expression are pairwise relatively prime:
Definition. The integers n1, n2, . . . , nk are said to be pairwise relatively prime when
they are relatively prime in pairs, that is, gcd(ni, nj) = 1 whenever i ̸= j.

The Chinese remainder theorem can now be generalized in a natural way involving
three or more copies of finite cyclic groups.

Theorem 10.2 (Chinese Remainder Theorem). If the integers n1, n2, . . . , nk are pair-
wise relatively prime then Zn1 × Zn2 × · · · × Znk

≈ Zn1n2···nk
.

Hence, by the fundamental theorem, every finite abelian group is isomorphic to the
direct product of cyclic groups of a prime power order. This knowledge enables us to
classify with ease all abelian groups of a fixed order.
Example. Consider an abelian group of order 400 = 24 × 52. There are only 10 ways
in which we can possibly have distinct prime powers whose product is 400, where each
choice corresponds to a direct product in the following list.

Z24 × Z52 Z24 × Z5 × Z5

Z23 × Z2 × Z52 Z23 × Z2 × Z5 × Z5

Z22 × Z22 × Z52 Z22 × Z22 × Z5 × Z5

Z22 × Z2 × Z2 × Z52 Z22 × Z2 × Z2 × Z5 × Z5

Z2 × Z2 × Z2 × Z2 × Z52 Z2 × Z2 × Z2 × Z2 × Z5 × Z5

It is not hard to verify that no two of these 10 groups are isomorphic to each other.
Remark. Thus the number of distinct abelian groups of a prime order pk is given by
the p(k), i.e., the number of distinct partitions of the positive integer k. For example,
p(4) = 5 since there are 5 ways we can partition the number 4, namely (a) 4 = 4; (b)
4 = 3 + 1; (c) 4 = 2 + 2; (d) 4 = 2 + 1 + 1; and (e) 4 = 1 + 1 + 1 + 1.

Two immediate consequences of the fundamental theorem are worth mentioning,
one of which is an independent theorem due to Cauchy. Be aware, however, that the
genuine Cauchy’s theorem applies to finite groups in general, not just abelian groups.
(See Corollary 13.2.)

Corollary 10.3 (Cauchy’s Theorem). Let G be a finite abelian group of order divisible
by p, a prime number. Then there exists an element of order p in G.
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Proof. The prime p appears in the factorization of n = |G|, hence one of the cyclic
groups in the product, say the first, is Zpk with k ≥ 1. Since p divides pk, we have
an element of order p in Zpk , call it a. This gives us an element of order p in G,
corresponding to the element (a, 0, . . . , 0) in the direct product. ▽

Corollary 10.4. Suppose that G is an abelian group of order n, and that n has no
repeated prime factors. Then G ≈ Zn and hence G is cyclic.

Proof. Then G ≈ Zp1 × · · · × Zpk and since all these primes are pairwise relatively
prime, the result follows by the Chinese remainder theorem. ▽

Exercise 10. Complete this homework set before we continue to the next section.
1) List all the abelian groups of order (a) 25 (b) 42 (c) 100 (d) 1200.
2) Count how many abelian groups can have order (a) 5400 (b) 5184 (c) 2310 (d) 1024.
3) Prove (a) U8 ≈ U12 (b) U71 ≈ Z70 (c) U15 ≈ U16 ≈ U20 (d) U24 ≈ Z2 × Z2 × Z2.
4) Let G be a finite abelian group of order a multiple of d. Prove that G has a subgroup

of order d.

11 Permutation Groups
Definition. A permutation on a set A means a function f : A→ A which is one-to-one
and onto. If the set is given by A = {1, 2, 3, . . . , n} then let Sn denote the set of all
permutations on A. It is not hard to see that |Sn| = n! and that Sn forms a group
under function composition.2 We call Sn the symmetric group of degree n and call any
subgroup of Sn a permutation group.

Theorem 11.1 (Cayley’s Theorem). Every group is isomorphic to a permutation
group.

Sketch of proof. For each a ∈ G we associate to it fa : G→ G given by fa(x) = ax for
all x ∈ G. This function fa is a permutation on G. The set G′ = {fa | a ∈ G} is then
a group under composition. That G ≈ G′ can be established by showing that a → fa
is indeed an isomorphism. ▽

Remark. If G is a finite group, according to Cayley’s theorem, G is isomorphic to a
subgroup of Sn, where n = |G|. In particular, there can be only finitely many groups,
up to isomorphism, of a given finite order.
Example. Consider S6, the group of 6! = 720 permutations on {1, 2, 3, 4, 5, 6}. An
element f ∈ S6 may be expressed in cyclic notation, e.g., f = (1, 2, 5)(3, 6), which
determines the behaviour of the function f given by

f(1) = 2 f(2) = 5 f(3) = 6

f(4) = 4 f(5) = 1 f(6) = 3

2Recall from calculus concerning the composition of two functions f and g which is normally
written g ◦ f(x) = g(f(x)).
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Note that 4 is missing in the notation; this is understood as f(4) = 4. In general,
elements left unchanged by the permutation need not be included in the cyclic nota-
tion, except when writing the identity permutation: e = (1). Following convention,
composition is read from right to left, and it is generally non-commutative, e.g.,

(1, 2, 5)(3, 6) ◦ (1, 4, 6, 2) = (1, 4, 3, 6, 5)

(1, 4, 6, 2) ◦ (1, 2, 5)(3, 6) = (2, 5, 4, 6, 3)

Definition. The term cycle refers to each bracketed part in a cyclic notation. It is
intuitively clear that every permutation can be represented by disjoint cycles, that is,
where no two cycles have a common element. If a cycle has d elements in it, we call it
a d-cycle.

For example, the permutation (1, 2, 5)(3, 6) is written in two disjoint cycles: the 3-
cycle (1, 2, 5) and the 2-cycle (3, 6). Note that it is not ambiguous to write (1, 2, 5)(3, 6)
in place of the composition (1, 2, 5) ◦ (3, 6). Moreover,

Proposition 11.2. If f and g are two disjoint cycles then g ◦ f = f ◦ g.

Proposition 11.3. Every permutation is a product of 2-cycles. There is more than
one way to express this product, but the parity of the number of 2-cycles that are used
is unique, i.e., always even or always odd.

Proof. Note that, for example, (1, 2, 3, 4, 5, 6) = (1, 2, 3, 4, 5)◦(5, 6) and then use induc-
tion. To show that parity is unique, first prove that the identity e cannot be written
as a product of odd 2-cycles (again by induction). Next observe that f−1 = f if f is a
2-cycle. Hence with 2-cycles, if f1f2 · · · fs = g1g2 · · · gt then gt · · · g2g1 ◦ f1f2 · · · fs = e,
and so s+ t must be even, i.e., s and t are either both odd or both even. ▽

Definition. A permutation is called even or odd as it is the product of an even or odd
number of 2-cycles. In particular, the even permutations form a subgroup of Sn, called
the alternating group of degree n and denoted by An.

Theorem 11.4. An is a subgroup of Sn of order n!/2.

Proof. Working with 2-cycles, it is clear that the composition of two even permutations
is again even. Furthermore since every 2-cycle is self-inverse, the inverse of a permu-
tation retains its parity. (Why?) Theorem 4.2 then implies that An is a subgroup.

Now, what are the cosets induced by An? One of them is eAn = An. Then consider
the coset (1, 2)An. (Despite its appearance, this is a right coset since composition reads
right to left. Also, the theorem must assume n ≥ 2, else A1 = S1 = {e}.) Every odd
permutation f belongs to (1, 2)An because f−1 ◦ (1, 2) is even. These two cosets then
make up all of Sn, hence An accounts for exactly half of the elements in Sn. ▽

Exercise 11. Complete this homework set before we continue to the next section.
1) Use the cyclic notation to write all the elements in S4, separating between the even

and the odd permutations.
2) Find all the cosets with respect to the given subgroup H ⊆ G: (a) ⟨(1, 3, 2)⟩ ⊆ A4

(b) ⟨(1, 4)(2, 3)⟩ ⊆ A4 (c) A3 ⊆ S3 (d) ⟨(1, 4, 2, 3)⟩ ⊆ S4.
3) Prove that (a) the group Sn is non-abelian for n ≥ 3 and (b) the subgroup An is

non-abelian for n ≥ 4.
4) Prove that the alternating subgroup An is normal in Sn, and then draw the Cayley

table for the factor group Sn/An.
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12 The Dihedral Groups
We consider a permutation group which arises in geometry, i.e., the group of symme-
tries on a regular polygon. Let us label the vertices of a regular n-gon by 1, 2, . . . , n.
There are n symmetries by rotation of do, 2do, 3do, . . . , 360o angles, where d = 360/n.
Looking at the n vertices, these rotations are respectively given by the permutations
R,R2, R3, . . . , Rn, where R = (1, 2, 3, . . . , n) and Rn = e. Then there are also reflec-
tions along the n axes of symmetry, making a total of 2n permutations which form a
subgroup Dn of Sn.
Example. We illustrate with n = 4, a square. The four reflections are F1 = (1, 4)(2, 3),
F2 = (2, 4), F3 = (1, 2)(3, 4), and F4 = (1, 3); while the four rotations are given by
R = (1, 2, 3, 4), R2 = (1, 3)(2, 4), R3 = (1, 4, 3, 2), and R4 = e.

The Cayley table for D4 given below shows how the compositions work. Do not
forget that they read right to left, so in our version we have row ◦ column, e.g.,
R3 ◦ F1 = (1, 4, 3, 2) ◦ (1, 4)(2, 3) = (1, 3) = F4—you see this result in the R3 row (row
3) and F1 column (column 5).

◦ R R2 R3 R4 F1 F2 F3 F4

R R2 R3 R4 R F2 F3 F4 F1

R2 R3 R4 R R2 F3 F4 F1 F2

R3 R4 R R2 R3 F4 F1 F2 F3

R4 R R2 R3 R4 F1 F2 F3 F4

F1 F4 F3 F2 F1 R4 R3 R2 R
F2 F1 F4 F3 F2 R R4 R3 R2

F3 F2 F1 F4 F3 R2 R R4 R3

F4 F3 F2 F1 F4 R3 R2 R R4

Theorem 12.1. Dn is a group under composition of functions.

Proof. As a finite subset of Sn, it suffices to show that Dn is closed under composition,
meaning that g ◦ f ∈ Dn for all f, g ∈ Dn. This is clear if both f and g are rotations
for the rotations form the cyclic subgroup ⟨R⟩ of Sn. The Cayley table above suggests
that in general g ◦ f is a rotation when f and g are both reflections, and that g ◦ f
is a reflection when f and g are of opposite kind. Although these results may be
geometrically intuitive, we leave the proof as an exercise. ▽

Definition. We fix the notation Dn = {R,R2, . . . , Rn, F1, F2, . . . , Fn}, refering to the
R’s as rotations and the F ’s reflections. In particular, we let R = (1, 2, 3, . . . , n), hence
|R| = n. This permutation group Dn is called the dihedral group of degree n.

Note that since |Dn| = 2n, in particular we have D3 = S3. But in general Dn is a
proper subgroup of Sn and is non-abelian as Sn is.

Theorem 12.2. Let p denote a prime number larger than 2. Every group of order 2p
is isomorphic to either Z2p (if abelian) or to Dp (if non-abelian).

Proof. The abelian case is given by Corollary 10.4. Assume G is a non-abelian group
of order 2p. A non-identity element in G must have order 2 or p (not 2p or else G
would be cyclic, hence abelian). Not all elements can have order 2, lest G would be
abelian (Exercise 1.4) so let a ∈ G be chosen with |a| = p.
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Thus G is partitioned into two cosets, ⟨a⟩ and ⟨a⟩b for any element b ̸∈ ⟨a⟩. More-
over |b| = 2 for the following reason. If not then |b| = p and ⟨a⟩ ∩ ⟨b⟩ = {e} since a
non-trivial common element will generate both. But ⟨a⟩ is normal in G (of index 2!)
so ⟨a⟩b2 is identity in G/⟨a⟩, that is, b2 ∈ ⟨a⟩—a contradiction.

We have shown that any non-abelian group of order 2p is necessarily of the form
G = {a, a2, . . . , ap = e, ab, a2b, . . . , apb = b}. To complete the proof, we next show
that the binary operation on G is uniquely determined so that up to isomorphism
there can be only one such group. Simply note that |ab| = 2 since ab ̸∈ ⟨a⟩, thus
ab = (ab)−1 = b−1a−1 = ba−1. This determines all products in G for they are of the
form either ai(ajbk) = ai+jbk or (aib)(ajbk) = ai(baj)bk = ai(a−jb)bk = ai−jbk+1, where
k = 0 or 1. ▽

In the above proof we are shown two more facts about Dn which we shall state and
prove again anyhow as follows.

Proposition 12.3. In any dihedral group, the composition of a rotation with a reflec-
tion, in either order, is a reflection.

Proof. The cyclic subgroup ⟨R⟩ of Dn contains all the n rotations, and it generates two
cosets—the other one being the set of all n reflections represented by F ⟨R⟩, or ⟨R⟩F ,
for any reflection F ∈ Dn. ▽

Proposition 12.4. If F ∈ Dn is a reflection then F ◦R = Rn−1 ◦ F .

Proof. Being a reflection, F ◦R is self-inverse, hence F ◦R = (F ◦R)−1 = R−1 ◦F . ▽

Exercise 12. Complete this homework set before we continue to the next section.
1) Use the cyclic notation to write all the elements of Dn, distinguishing between the

rotations and the reflections in each one, for n = (a) 3 (b) 4 (c) 5 (d) 6.
2) Find all the cosets with respect to the given subgroup H ⊆ G: (a) ⟨(1, 2, 3, 4)⟩ ⊆ D4

(b) ⟨(2, 5)(3, 4)⟩ ⊆ D5 (c) ⟨(1, 3, 5)(2, 4, 6)⟩ ⊆ D6 (d) D4 ⊆ S4.
3) Prove that (a) Dn is non-abelian for all n ≥ 3 and (b) Dn ⊆ An if and only if

n = 4k + 1 for all k ≥ 1.
4) In any dihedral group, prove that the composition of two reflections is a rotation.

13 Topics in Finite Groups
Many of the results concerning finite groups rely on the well-known Sylow theorems,
some of which are stated without proof as follows.

Theorem 13.1 (Sylow’s Theorem). Suppose that |G| = pkm, where p is a prime
number not dividing m. Then G has a subgroup of order pj, for each 0 ≤ j ≤ k.
Moreover, the number of subgroups of order pk is a divisor of m in the congruence
class [1]p and in particular this subgroup is unique if and only if normal.

Note that Sylow’s theorem supercedes that of Cauchy. We state Cauchy’s theo-
rem again next as a corollary, followed by another immediate consequence of Sylow’s
theorem.

Corollary 13.2 (Cauchy’s Theorem). Let G be a finite group of order divisible by p,
a prime number. Then G has an element of order p.
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Proof. It suffices if G has a subgroup of order p, because such subgroup is necessarily
generated by an element of the same order. That is what Sylow’s theorem says. ▽

Corollary 13.3. Let p < q, both prime numbers, such that q ̸∈ [1]p. Then any group
of order pq is isomorphic to Zpq.

Proof. Under the given conditions, Sylow’s theorem says we have a unique, hence
normal, subgroups of each order p and q, call them P and Q, respectively. Let a ∈ P
and b ∈ Q. We will show that ab = ba. Being normal, they imply ba−1b−1 ∈ P and
aba−1 ∈ Q. Now let x = aba−1b−1 = a(ba−1b−1) = (aba−1)b−1; the first identity says
x ∈ P and the second x ∈ Q. Hence x belongs to P ∩ Q, a subgroup whose order
divides both p and q, so it is trivial. We conclude e = x = aba−1b−1 and ab = ba.

Next, the map θ : P ×Q → G such that θ(a, b) = ab is a homomorphism because,
by what we have shown above, θ((a, b)(c, d)) = acbd = abcd = θ(a, b)θ(c, d). The kernel
contains (a, b) for which ab = e, or a = b−1. Again this would mean a ∈ P ∩ Q and
a = e = b. Hence θ is one-to-one and, since G is finite, onto as well. This yields the
isomorphism G ≈ P ×Q ≈ Zp × Zq ≈ Zpq by the Chinese remainder theorem. ▽

Efforts have been done in order to classify all finite groups of a given order, up to
isomorphism. As an additional tool, the following theorem is a useful well-known fact
in finite group theory.

Theorem 13.4. Every group of order p2, where p is prime, is abelian.

Therefore, by the fundamental theorem of finite abelian groups, a group of order
p2 must be Zp2 (cyclic) or Zp ×Zp (non-cyclic). Previously, we have seen that a group
of order 2p, if p > 2, is either Z2p (abelian) or Dp (non-abelian). And before that, of
course, any group of order p is cyclic and isomorphic to Zp.

A complete classification of all finite groups of order 15 or less is given in the
following table.

n Groups of order n, up to isomorphism
1 Z1

2 Z2

3 Z3

4 Z4, Z2 × Z2

5 Z5

6 Z6, S3

7 Z7

8 Z8, Z4 × Z2, Z2 × Z2 × Z2, D4, Q8 (see Exercise 13.1)
9 Z9, Z3 × Z3

10 Z10, D5

11 Z11

12 Z12, Z6 × Z2, A4, D6, Q12 (see Remark below)
13 Z13

14 Z14, D7

15 Z15

Beyond this table, there are 14 groups of order 16 and, to mention some of the
extremes, 51 of order 32 and 267 of order 64.
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Remark. The notation Q12 = ⟨a, b | a4 = b3 = a3bab = e⟩ stands for the group
generated by two elements a, b under the given defining relations. Note that the last
identity can be written ba = ab2. You can check the Cayley table for the 12 elements
of {ajbk | 1 ≤ j ≤ 4, 1 ≤ k ≤ 3} in order to see why this non-abelian group is neither
A4 nor D6.
Definition. A group G is simple if it has no normal subgroups other than {e} and G
itself.

Simple groups are an important and difficult topic in finite group theory, and which
are closely connected to the study of polynomial equations. Roughly speaking, know-
ing a normal subgroup H of G enables one to study the smaller factor group G/H.
Therefore, identifying finite simple groups will help in the classification problem of
finite groups in general.
Example. There are no simple groups of order 20. Since 20 = 4×5, by Sylow’s theorem
any group G of order 20 has a subgroup of order 5. The number n of such subgroups
divides 4 and belongs to the congruence class [1]5. Only n = 1 meets these conditions.
Being unique, this subgroup of order 5 is normal, hence G is not simple.

We have seen in Corollary 6.5 that any group of prime order is simple and is
essentially Zp—in fact too simple, as it has no non-trivial subgroups at all. We shall
now demonstrate why there are no simple abelian groups other than these.

Theorem 13.5. Every simple abelian group is isomorphic to Zp for some prime p.

Proof. For abelian groups, all subgroups are normal. So an abelian group G can be
simple only if it has no proper subgroups. In particular, ⟨a⟩ = G for any non-identity
element a ∈ G. And we know that the only cyclic groups with no proper subgroups
are those of prime order. ▽

It has also been proved that there are no non-abelian simple groups of odd order,
nor of order twice an odd number. On the other hand, a whole class of non-abelian
simple groups of even order is given by the alternating groups:

Theorem 13.6. The alternating group An is simple if and only if n ≥ 5.

Exercise 13. Complete this homework set before we continue to the next section.
1) The quaternion group Q8 = {±E,±I,±J,±K} is a subgroup of SL(2,C), where

E =

(
1 0
0 1

)
I =

(
0 1

−1 0

)
J =

(
0 i
i 0

)
K =

(
i 0
0 −i

)
a) Draw the Cayley table to verify that Q8 is indeed a subgroup of SL(2,C).
b) Determine the order of each element in Q8.
c) Draw the subgroup lattice for Q8, noting that it has 4 non-trivial subgroups.
d) Show that every subgroup of Q8 is normal, despite its being non-abelian.

2) Classify all groups of order below 100 to which Corollary 13.3 can be applied.
3) Prove that there can only be two groups of order 99.
4) Prove that no simple group has order 30.
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14 Rings
Definition. Let R be a set together with two binary operations, refered to as addition
(+) and multiplication (×). Then R is a ring if it has the following properties.

1) R is an abelian group under addition.

2) Multiplication in R is associative, meaning that a× (b× c) = (a× b)× c for every
a, b, c ∈ R.

3) Distributive laws hold in R, meaning that a × (b + c) = (a × b) + (a × c) and
(a+ b)× c = (a× c) + (b× c) for every a, b, c ∈ R.

Note that the first property is composed of the following four.

1) Addition in R is commutative: a+ b = b+ a for every a, b ∈ R.

2) Addition in R is associative: a+ (b+ c) = (a+ b) + c for every a, b, c ∈ R.

3) There exists a unique identity element in R under addition—the zero element, which
is denoted by 0, such that a+ 0 = a for every a ∈ R.

4) For each a ∈ R there exists a unique inverse element—the negative of a, which is
written −a, such that a+ (−a) = 0.

Example. Let us illustrate this idea with a few examples.

1) The set Z of integers under ordinary addition and multiplication is a ring. The zero
element is given by the integer 0 and the negative of a ∈ Z is the integer −a.

2) Similarly the sets Q,R,C of rational numbers, real numbers, and complex numbers,
are respectively rings under ordinary addition and multiplication.

3) The subset of even numbers is a ring on its own. More generally the set of multiples
of n, that is, ⟨n⟩ = {nk | k ∈ Z} is a ring under ordinary addition and multiplication.

4) The set Zn of modular integers under addition and multiplication mod n is a ring.
The zero element is 0 = [0]n and the negative of [a]n is given by −[a]n = [−a]n.

5) The set Z[
√
2] = {a + b

√
2 | a, b ∈ Z} is a ring under ordinary addition and

multiplication.

6) The set M(2,R) of 2× 2 matrices with real entries is a ring under matrix additon
and matrix multiplication. Similar statement holds with R replaced by Z,Q, or C
as well.

Remark. From now on we write ab instead of a × b. Moreover, associativity implies
that the sum a+ b+ c and the product abc may be written without requiring brackets.
This can be generalized to any finite number of elements, such as a1a2 · · · ak.
Definition. Unlike addition, multiplication is not assumed commutative in a ring. How-
ever, if it is then the ring R is called commutative. And if there exists an identity
element under multiplication, we shall call it unity and denote it by 1. Hence, a unity
in R is an element 1 ∈ R satisfying a1 = 1a = a for every a ∈ R.
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Note that all the examples given above are commutative rings with unity, except
the last one is not commutative since matrix multiplication is generally not.

Proposition 14.1. Let R be a ring. For every a, b, c ∈ R,

1) 0a = a0 = 0

2) a(−b) = −(ab) = (−a)b

3) a(b− c) = ab− ac and (b− c)a = ba− ca

4) (−1)a = −a if unity exists.

Proof. Using the definition of zero and the distributive law, a0 = a(0 + 0) = a0 + a0.
Adding −(a0) to both sides produces 0 = a0. Similarly we show 0a = 0 in order to
establish (1). The rest of the proof is left as an exercise. ▽

Theorem 14.2. If R and S are two rings, with their respective additions and multi-
plications, then the set R × S = {(r, s) | r ∈ R and s ∈ S} is also a ring under the
usual component-wise operations. We call this ring the direct product of R and S.

Proof. Exercise. ▽

Definition. A subset S of a ring R is a subring if S is itself a ring with respect to the
same addition and multiplication of R.

For example, we have the tower of subrings given by Z ⊆ Q ⊆ R ⊆ C. Also, the
even numbers form a subring of Z. Because a subring is necessarily a subgroup with
respect to addition, from group theory we know that all subrings of Z must come in
the form ⟨n⟩. The next theorem can be used to show that for each n ∈ Z, the subgroup
⟨n⟩ is indeed a subring of Z.

Theorem 14.3. Let R be a ring. A subset S ⊆ R is a subring if and only if S is a
subgroup of R under addition and is closed under multiplication. (Being closed under
multiplication means that ab ∈ S whenever a, b ∈ S.)

Proof. In class. ▽

For example, we may verify that the set Z[
√
2] = {a + b

√
2 | a, b ∈ Z} is indeed

a ring by showing that Z[
√
2] is a subring of R, by means of Theorem 14.3: For all

a, b, c, d ∈ Z we have (i) (a+ b
√
2)− (c+ d

√
2) = (a− c) + (b− d)

√
2 ∈ Z[

√
2] and (ii)

(a+ b
√
2)(c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2 ∈ Z[

√
2].

Exercise 14. Complete this homework set before we continue to the next section.
1) Given the ring R, prove that S ⊆ R is a subring: (a) {a + b

√
3 | a, b ∈ Z} ⊆ R

(b)
{(

a 0
0 d

)
| a, d ∈ Z

}
⊆ M(2,Z) (c)

{(
a b

−b a

)
| a, b ∈ R

}
⊆ M(2,R) (d)

{0, 2, 4, 6, 8, 10} ⊆ Z12.
2) If S and T are both subrings of R, prove that S ∩ T is also a subring of R.
3) Let R be a ring and a ∈ R. Prove that the subset S ⊆ R is a subring, where S =

(a) {x ∈ R | ax = 0} (b) {x ∈ R | ax = xa} (c) {x ∈ R | rx = xr for all r ∈ R} (d)
{ax | x ∈ R}

4) Let R be a ring. Prove that if R is cyclic as a group under addition, then R is
commutative as a ring.
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15 Integral Domains
Definition. Let a and b be two nonzero elements in a ring R. If ab = 0 then a and b
are each called a zero divisor of R.

Example. There are zero divisors in M(2,R), e.g., A =

(
0 1
0 0

)
and B =

(
1 1
0 0

)
.

You may check that AB is the zero matrix. Another example, in Z6 we have 3× 4 ≡
0 (mod 6), hence 3 and 4 are zero divisors there.

Lemma 15.1. A nonzero element m ∈ Zn is a zero divisor if and only if m and n are
not relatively prime.

Proof. Suppose m and n have a common divisor d > 1. Then m(n/d) ≡ 0 (modn)
where 1 ≤ n/d < n is a nonzero element. Hence m is a zero divisor. Conversely if m
and n are relatively prime, the relation mb ≡ 0 (modn) implies, by Euclid’s lemma,
that b ≡ 0 (modn). Hence m is not a zero divisor. ▽

Remark. Equivalently, the nonzero element m ∈ Zn is not a zero divisor if and only
if m ∈ Un. In other words, the zero divisors of Zn are precisely elements of the set
Zn − (Un ∪ {0}).

Proposition 15.2. Let R be a ring with a nonzero element a that is not a zero divisor.
For any b, c ∈ R, if ab = ac then b = c. Similarly, ba = ca implies b = c.

Proof. If ab = ac then 0 = ab − ac = a(b − c) and, since a is not a zero divisor, we
must have b− c = 0, i.e., b = c. ▽

Definition. A ring R is an integral domain if R is a commutative ring with unity and
without zero divisors.
Example. The rings Z,Q,R, and C are all integral domains.
Remark. Proposition 15.2 says that the cancellation laws hold in an integral domain
(both right and left since commutative) because of the lack of zero divisors. In other
rings cancellation laws may fail, e.g., in Z6 we have 2×1 ≡ 2×4 (mod 6), but cancelling
the 2 results in 1 ≡ 4 (mod 6), which is false. The next theorem explains why Z6 is not
an integral domain.

Theorem 15.3. The ring Zn is an integral domain if and only if n is prime.

Proof. This follows from the preceding lemma since a number n is prime if and only if
it is relatively prime to 1, 2, . . . , n− 1. ▽

Definition. Let R be a ring with unity. If ab = 1 in R, then a and b are each called a
unit element. (Do not confuse a unit with unity. Perhaps we should call unit elements
unity divisors, to go with zero divisors.)

Thus if R is commutative, then unit elements are those with a multiplicative inverse.
We denote the inverse of a under multiplication by a−1 and reserve the term inverse
for mutiplication, since under addition we have agreed to use the word negative.
Example. The units of Zn form the subset Un. (Recall, U is for units.) In particular,
we will see that zero divisors and units are always mutually exclusive.

Theorem 15.4. Let R be a commutative ring with unity.
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1) No zero divisor is a unit.

2) If a ∈ R is a unit, then ab = ac implies b = c.

3) The units of R form a group under multiplication.

4) If R is finite, then every nonzero element is either a unit or a zero divisor.

Proof. In class. ▽

Remark. Note that the finite condition in (4) is essential; For example, all the integers
in the ring Z, other than ±1, are neither units nor zero divisors.
Definition. A ring R is a field if R is a commutative ring with unity in which every
nonzero element is a unit. In other words, the nonzero elements of a field form an
abelian group under multiplication.
Example. The rings Q,R, and C are all fields. But Z is not a field since no integer can
have a multiplicative inverse except ±1.

Theorem 15.5. A field is an integral domain.

Proof. Let F be a field and a ∈ F , nonzero. It suffices to show that a is not a zero
divisor, and that is because a is a unit. ▽

Theorem 15.6. A finite integral domain is a field.

Proof. Let R = {a1, a2, . . . , an} be an integral domain and choose a ∈ R, nonzero. It
suffices to show that ab = 1 for some b ∈ R. The elements aa1, aa2, . . . , aan are all
distinct since aaj = aak implies aj = ak by the cancellation law, hence they make up
all the elements of R. In particular one of them is aai = 1. ▽

Corollary 15.7. The ring Zn is a field if and only if n is a prime number.

Proof. Because Zn is finite and is an integral domain if and only if n is prime, according
to Theorem 15.3. ▽

Remark. From a different angle, we can see why Zp is a field, where p is prime: because
its nonzero elements make up the abelian group Up under multiplication mod p.
Definition. Let F be a field. A subset S ⊆ F is a subfield if S is itself a field with
respect to the addition and multiplication associated with F .

Theorem 15.8. A subset S of a field F is a subfield if and only if S is a subgroup of
F under addition and S∗ is a subgroup of F ∗ under multiplication.

Proof. This follows from the subgroup test of Theorem 4.2. ▽

Remark. The notation F ∗ stands for the set of nonzero elements of F , and similarly
for S∗. This theorem in particular implies that the zero and unity of the subfield S are
the same as those of F , respectively.

Exercise 15. Complete this homework set before we continue to the next section.
1) Let R be a commutative ring with no zero divisors. Prove that if R is finite, then

R is an integral domain.
2) Find all the zero divisors and units in (a) Z24 (b) Z4 × Z5 (c) Q×Q (d) M(2,R).
3) Show why R× S is not an integral domain, for any rings R and S.
4) Prove that the set Q[

√
2] = {a+ b

√
2 | a, b ∈ Q} is a subfield of R.
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16 Ideals
Definition. A subset I of a ring R is an ideal if I is a subgroup under addition such
that if a ∈ I and r ∈ R then ar, ra ∈ I.

By Theorem 14.3 an ideal is a subring, but it is more than just a subring. (Roughly
speaking, an ideal for rings is the analogue of a normal subgroup for groups, in the
sense that it is the kernel of a homomormphism.) For example, the subring ⟨n⟩ of Z is
an ideal, for if a is a multiple of n then ar is still a multiple of n for any r ∈ Z.
Definition. Let R be a commutative ring with unity. For every a ∈ R define the set
(a) = {ra | r ∈ R}. The next theorem demonstrates that (a) is an ideal of R, which we
now call the principal ideal of R generated by a. Moreover, we call an ideal I principal
if I = (a) for some a ∈ R. (Compare a principal ideal to a cyclic subgroup, where it is
generated by one element.)

Theorem 16.1. Let R be a commutative ring with unity. For every a ∈ R, the set
(a) = {ra | r ∈ R} is an ideal.

Proof. If r, s ∈ R, the fact that ra− sa = (r− s)a shows that (a) is a subgroup under
addition. Moreover, given ra ∈ (a) and s ∈ R, we have s(ra) = (sr)a ∈ (a). ▽

Remark. Note that the ideal ⟨n⟩ of Z is really the principal ideal ⟨n⟩ = (n). For this
reason, we loosely refer to the elements of (a) as multiples of a in R.

Recall that every subgroup of a cyclic group is cyclic. The next definition is the
ring analogue of this property, which still holds in Z.
Definition. A ring R is a principal ideal domain if R is an integral domain in which
every ideal is principal.

Theorem 16.2. The ring Z is a principal ideal domain.

Proof. Z is integral domain where all ideals (subgroups) are of the form ⟨n⟩ = (n). ▽

Theorem 16.3. Let F be a field. The only ideals of F are {0} and F itself. Conversely,
let R be a commutative ring with unity and no ideals other than {0} and R itself. Then
R is a field.

Proof. Let I be an ideal of F . Suppose there is a ∈ I, nonzero. Since a−1 ∈ F , being
an ideal implies a−1a = 1 ∈ I. Then 1r = r ∈ I for all r ∈ F . Hence I = F . Now
let a ∈ R, nonzero. Then by hypothesis, (a) = R and, in particular, 1 = ra for some
r ∈ R. Hence a is a unit and R is a field. ▽

Remark. As a result, although trivial, we see that all fields are principal ideal domains
since their only ideals are (0) and (1).

Exercise 16. Complete this homework set before we continue to the next section.
1) Let S = {(n, n) | n ∈ Z}. Prove that S is a subring of Z× Z which is not an ideal.
2) Let R be a ring, not necessarily commutative, and let I denote an ideal in R. Prove

that the set S is also an ideal of R, where (a) S = {r ∈ R | ra = 0 for all a ∈ I}
(b) S = {r ∈ R | ra ∈ I for all a ∈ R}.

3) For I, J ideals of a ring R, we define I + J = {a+ b | a ∈ I, b ∈ J}. (a) Prove that
I + J is an ideal of R, and (b) show that (m) + (n) = (gcd(m,n)) as ideals of Z.

4) Prove that the principal ideal (2) in Z10 is a field.
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17 Factor Rings
Let I be a subring of a ring R. Since R is an abelian group, under addition, then I is a
normal subgroup of R. Hence we have the factor group of cosets, R/I = {I+r | r ∈ R},
in which (I+r)+(I+s) = I+(r+s). We now wish to make R/I a ring by introducing
the multiplication (I+r)(I+s) = I+rs. This will work, however, only if I is an ideal.

Lemma 17.1. Let I be an ideal of a ring R. For every elements I + r and I + s in the
factor group R/I, the multiplication (I + r)(I + s) = I + rs is well defined.

Proof. Suppose that I + r = I + r′ and I + s = I + s′, hence r− r′ ∈ I and s− s′ ∈ I.
It follows that the multiples rs− r′s and r′s− r′s′ belong to I as well. Add these two
elements and rs− r′s′ ∈ I, so I + rs = I + r′s′. ▽

Theorem 17.2. Let I be an ideal of a ring R. The factor group R/I is a ring.

Proof. It is left to show associativity and the distributive laws. These are trivial as
these properties are simply inherited from those of R. ▽

Definition. Let I be an ideal of R. The ring R/I = {I + r | r ∈ R} is called the factor
ring or quotient ring of R mod I.
Example. We have the old example of Z and the ideal (n). The factor group Z/(n) ≈ Zn

is now a ring with addition and multiplication mod n, but we already know that.

Exercise 17. Complete this homework set before we continue to the next section.
1) Construct the multiplication table for the factor ring (a) Z10/(5) (b) Z12/(9) (c)

2Z/(6) (d) Z4 × Z6/((2, 2)) and find all the units and zero divisors in each one.
2) Prove the following claim concerning the factor ring R/I.

a) If R is commutative with unity, then R/I is also commutative with unity.
b) If K is an ideal of R/I, then L = {r ∈ R | I + r ∈ K} is an ideal of R.
c) If R is a principal ideal domain, then every ideal in R/I is principal.
d) Find an example where R is a principal ideal domain but R/I is not.

3) Let R be a commutative ring with unity. A prime ideal I ⊂ R has the property
that for all a, b ∈ R, if ab ∈ I then either a ∈ I or b ∈ I. Prove that the ideal I is
prime if and only if R/I is an integral domain. (In particular, the ideal (n) ⊂ Z is
prime if and only if the integer n is prime.)

4) Let R be a commutative ring with unity. A maximal ideal I ⊂ R has the property
that for all ideals J ⊆ R, if I ⊆ J then either I = J or J = R. Prove that the ideal
I is maximal if and only if R/I is a field.

18 Ring Homomorphisms
Definition. Let R and R′ be two rings, each with their own addition and multiplication.
A function θ : R → R′ is called a (ring) homomorphism if for every a, b ∈ R, we have
θ(a+ b) = θ(a) + θ(b) and θ(ab) = θ(a)θ(b).

If θ is a homomorphism, we also define the range of θ to be θ(R) = {θ(a) | a ∈ R}
and the kernel ker(θ) = {a ∈ R | θ(a) = 0}. Both the zero elements for R and for R′

are denoted by 0, but they should be distinguishable from the context.
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Example. Let θ : Z → Zn be given by θ(a) = [a]n. This is the familiar group homomor-
phism, under addition, where ker(θ) = (n) and θ(Z) = Zn. Now since [ab]n = [a]n[b]n,
this θ is now a ring homomorphism.
Example. Let R = {a+b

√
2 | a, b ∈ Z} and θ : R → R, where θ(a+b

√
2) = a−b

√
2. It

is not hard to show that θ is a homomorphism, and that θ(R) = R and ker(θ) = {0}.

Proposition 18.1. Let θ : R → R′ be a ring homomorphism. Then

1) θ(0) = 0 and θ(−a) = −θ(a) for every a ∈ R.

2) θ is one-to-one if and only if ker(θ) = {0}.

3) θ(R) is a subring of R′.

4) ker(θ) is an ideal of R.

Proof. In class. ▽

Definition. A ring homomorphism θ : R → R′ is called an isomorphism if θ is one-to-
one and onto, in which case we say that R and R′ are isomorphic, written R ≈ R′.

Like the isomorphism between two groups, a ring isomorphism preserves the struc-
ture of the one ring onto the other, with respect to both addition and multiplication.
Thus two isomorphic rings are essentially the same ring except for the different la-
belling of the elements. In particular if R ≈ R′, then R is an integral domain, or a
field, if and only if R′ is an integral domain or a field, respectively.

Theorem 18.2 (The Fundamental Homomorphism Theorem for Rings). Suppose that
θ : R → R′ is a homomorphism of rings. Then R/ ker(θ) ≈ θ(R).

Proof. Let I = ker(θ) and Θ(I + r) = θ(r). We have seen that Θ : R/I → θ(R) is a
group isomorphism under addition. It is left to show that Θ preserves multiplication:
Θ((I + r)(I + s)) = Θ(I + rs) = θ(rs) = θ(r)θ(s) = Θ(I + r)Θ(I + s). ▽

Example. From the previous example we now have Z/(n) ≈ Zn as rings.

Theorem 18.3 (Chinese Remainder Theorem for Rings). Suppose that m and n are
relatively prime positive integers. Then Zm × Zn ≈ Zmn (as rings).

Proof. Recall the homomorphism θ : Z → Zm × Zn, as additive groups, given by
θ(a) = ([a]m, [a]n). This map is onto with ker(θ) = (mn). The fundamental theorem
gives the claim since θ(ab) = θ(a)θ(b), showing that θ is a ring homomorphism. ▽

Exercise 18. Complete this homework set before we continue to the next section.
1) Let θ : Z10 → Z10 be given by θ(n) = (a) −n (b) 3n (c) n2 (d) n3. For each one,

determine if θ is a group or ring isomorphism, or neither, and why.
2) Prove that 2Z ≈ 3Z as groups but not as rings.
3) Let θ : R → R′ be a ring homomorphism.

a) If θ is onto, prove that θ(1) = 1, if there is unity.
b) Give a counter-example where θ is not onto and θ(1) ̸= 1.
c) If R = R′ = Zn, prove that θ is isomorphism if and only if θ is the identity map.
d) If R is a field, prove that either θ is one-to-one or else θ(a) = 0 for all a ∈ R.

4) Prove that the subring
{(

a b
−b a

)
| a, b ∈ R

}
⊆ M(2,R) is isomorphic to C,

hence it is a field.
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19 Polynomial Rings
Definition. Let R[x] = {a0 + a1x + a2x

2 + a3x
3 + · · · + anx

n | ai ∈ R}, where R is
a commutative ring. Every element f ∈ R[x] is a polynomial with coefficients in R.
For each polynomial f we define its degree, written deg f , to be the largest integer k
for which ak ̸= 0. The zero polynomial, f = 0, has an infinite degree, and we write
deg f = ∞.

Note that R ⊆ R[x]. We call every polynomial f ∈ R a constant. In other words,
a nonzero polynomial f is a constant if and only if deg f = 0.

We define addition and multiplication of polynomials the usual way. If f =
∑
aix

i

and g =
∑
bix

i are nonzero polynomials, then

f + g =
M∑
i=0

(ai + bi)x
i

f g =
N∑
i=0

ci x
i where ck =

k∑
i=0

ai bk−i

where M = max{deg f, deg g} and N = deg f + deg g.
Theorem 19.1. If R is a commutative ring, so is R[x], which we call the ring of
polynomials over R. The zero element in R[x] is the zero polynomial f = 0, and for
each polynomial f =

∑
aix

i, the negative of f is given by −f =
∑

(−ai)xi.
Proof. In class. ▽
Proposition 19.2. If R is an integral domain, then deg fg = deg f + deg g for all
nonzero polynomials f, g ∈ R[x].
Proof. Let deg f = n and deg g = m. By the rule of multiplication, it is clear that
deg fg ≤ m + n. Also, keeping the notation above, the coefficient of xm+n in fg is
given by cm+n = anbm. Since an, bm ̸= 0 and R has no zero divisors, then cm+n ̸= 0.
Hence deg fg = m+ n. ▽

Remark. In a ring other than integral domain, Proposition 19.2 may fail. For example,
in Z6[x] we have (2x− 1)(3x+ 2) = x− 2 and also 4x5 × 3x2 = 0.
Corollary 19.3. If R is an integral domain, then deg fg ≥ deg f for all f, g ∈ R[x].
Proof. This follows since the degree of any polynomial is a non-negative number. ▽
Proposition 19.4. If R is an integral domain, so is R[x].
Proof. R[x] is commutative with unity 1, the unity of R. And if f and g are nonzero
polynomials then fg ̸= 0 because Proposition 19.2 asserts that fg has a finite degree,
unlike the zero polynomial. ▽
Exercise 19. Complete this homework set before we continue to the next section.
1) Let R be a ring. (a) Show why R[x] is not a field. (b) What are the units in R[x]?
2) Let R be an integral domain, and let I = {f ∈ R[x] | f(0) = 0}, where f(0) denotes

the polynomial f(x) evaluated at x = 0. Prove that I is a principal ideal of R[x].
3) Let I = {f(x) ∈ Z[x] | f(0) ∈ 2Z}. Prove that I is an ideal of Z[x] which is not

principal. Hence Z[x] is not a principal ideal domain.
4) Let S = {f(x) ∈ R[x] | f ′(0) = 0}, where f ′(0) denotes the first derivative of f(x),

as defined in Calculus, evaluated at 0. Prove that S is a subring of R[x] which is
not an ideal.
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20 Divisibility in F [x]

We consider polynomials whose coefficients lie in a field F . The integral domain F [x]
shares many arithmetical properties enjoyed by the ring Z of integers.
Definition. Let F be a field and f, g ∈ F [x]. We say that f divides g if g = hf for some
h ∈ F [x]. In this case we may also say that g is divisible by f , or that g is a multiple
of f , and write f | g. Moreover, f is called a divisor or factor of g.
Example. Over the field Q, (x−1) | (1

2
x2+x− 3

2
) because (x−1)(1

2
x+ 3

2
) = 1

2
x2+x− 3

2
.

Proposition 20.1. In F [x] the following statements hold, where F is a field.

1) The constant 1 divides all other polynomials.

2) If f | g ̸= 0 then deg f ≤ deg g.

3) If f | g and g | h then f | h.

4) If f | g and f | h then f | ag + bh for all a, b ∈ F [x].

Proof. In class. ▽

Corollary 20.2. If f | g and g | f , then g = af for some constant a ∈ F .

Proof. We have deg f ≤ deg g ≤ deg f , hence deg f = deg g. It follows that g = af
with deg a = 0. ▽

Theorem 20.3 (The Division Algorithm in F [x]). Let f and g be two nonzero poly-
nomials over a field F . Then there exist unique polynomials q, r ∈ F [x] such that
g = qf + r, where either r = 0 or deg r < deg f .

Proof. If g = 0 then let q = r = 0. If deg g < deg f then we let q = 0 and r = g. Else,
let f =

∑n
0 aix

i and g =
∑m

0 bix
i with m ≥ n. By way of induction we assume the

theorem is true for all g of degree less than m. Let g′ = g−cfxm−n where c = bm(an)
−1.

Then either g′ = 0 or else deg g′ < deg g. By induction hypothesis, we have g′ = q′f+r
where r = 0 or deg r < deg f . It follows that g = qf + r with q = q′cxm−n.

To prove uniqueness, suppose that g = qf + r = Qf + R where also R = 0 or
degR < deg f . Then (q−Q)f = R− r. If R− r ̸= 0 then deg(R− r) < deg f , whereas
deg(q − Q)f ≥ deg f by Corollary 19.3. To avoid contradiction we must have R = r
and (q −Q)f = 0, which implies q = Q since F [x] has no zero divisors. ▽

Definition. The polynomials q, r in the preceding theorem are called the quotient and
remainder, respectively, upon dividing g by f . In particular, we define g mod f = r.

Corollary 20.4. [Remainder Theorem] Let a ∈ F and g ∈ F [x]. Then g mod (x−a) =
g(a), i.e., g(a) is the remainder when g is divided by x− a. In particular, (x− a) | g if
and only if g(a) = 0.

Proof. Divide g by x− a, and g(x) = q(x− a) + r. Then g(a) = r, the remainder. ▽

Theorem 20.5. Where F is a field, the ring F [x] is a principal ideal domain.
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Proof. Let I be an ideal of F [x] and let f be a polynomial of least degree in I. By
the division algorithm, for each g ∈ I there are q, r ∈ F [x] such that g = qf + r with
either r = 0 or deg r < deg f . But since I is an ideal, r = g − qf ∈ I, so deg r < deg f
is not possible. Hence r = 0 and g ∈ (f). We have proved that I = (f). ▽
Lemma 20.6. Let f, g ∈ F [x]. The set {af + bg | a, b ∈ F [x]} is an ideal of F [x].
Proof. Exercise. ▽

Definition. Let F be a field and f, g ∈ F [x]. A greatest common divisor of f and g is
a polynomial d ∈ F [x] such that (d) = {af + bg | a, b ∈ F [x]}.
Proposition 20.7. Let d be a greatest common divisor of f and g in F [x]. Then
1) d | f and d | g

2) d = af + bg for some a, b ∈ F [x]

3) if c | f and c | g then c | d

4) if c is another greatest common divisor of f and g, then c = ad for some a ∈ F .
Proof. In class. ▽

Definition. If f =
∑
ai x

i ∈ F [x] with degree n, we call an the leading coefficient of f .
A polynomial f ∈ F [x] is monic when its leading coefficient is 1, the unity of F .

It is now clear that if (c) = (d) as ideals in F [x], then c = ad for some constant
a ∈ F . In particular, if both c and d are monic polynomials, then a = 1 and c = d.
This fact enables us to define gcd(f, g) as follows.
Definition. Let F be a field and f, g ∈ F [x]. Define gcd(f, g) = d, where d ∈ F [x] is
the monic polynomial for which (d) = {af + bg | a, b ∈ F [x]}. We call gcd(f, g) the
greatest common divisor of f and g.
Theorem 20.8. For all f, g ∈ F [x], we have gcd(f, g) = gcd(g, f mod g).
Proof. In class. ▽

Example. We find that gcd(x81 − 1, x24 − 1) = x3 − 1 (monic) in Q[x] as follows.
(x81 − 1) mod (x24 − 1) = x9 − 1

(x24 − 1) mod (x9 − 1) = x6 − 1

(x9 − 1) mod (x6 − 1) = x3 − 1

(x6 − 1) mod (x3 − 1) = 0

Similarly, over Z5 we check that gcd(3x6 − x2 + 2, 3x4 − 2x2 − 1) = x2 + 2.
Exercise 20. Complete this homework set before we continue to the next section.
1) Let F be a field and f ∈ F [x] with deg f = n. (a) Prove that f has at most n zeros

over F , and (b) find a counter-example for (a) if F is not a field.
2) Find (a) gcd(x108−1, x66−1) ∈ Q[x] (b) gcd(x14+x8+x4+x2+1, x12+x4+1) ∈ Z2[x]

(c) gcd(2x11 + 3, 3x7 + 2) ∈ Z5[x] (d) gcd(6x5 + 2x3 + 2x2 + 3, 4x4 + 5) ∈ Z7[x].
3) Let f, g, h ∈ F [x] with gcd(f, g) = 1. Prove that if f | h and g | h, then fg | h.
4) Suppose the field F is finite with n elements. Prove each claim in the given order:

a) an = a for all a ∈ F .
b) xn − x =

∏
(x− a), where the product ranges over all a ∈ F .

c) −1 =
∏

a, where the product ranges over all a ∈ F ∗.
d) (p− 1)! ≡ −1 (mod p), where p is prime. (Wilson’s Theorem)
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21 Irreducible Polynomials
Definition. Let F be a field. A polynomial f ∈ F [x] is reducible if f is divisible by
another polynomial g ∈ F [x] with 0 < deg g < deg f . We call f irreducible when f is
not reducible.

Theorem 21.1. If f | gh and f is irreducible, then f | g or f | h.

Proof. Let d | f . If deg d > 0 then deg d = deg f , and d = af for some a ∈ F . If d | g
as well then f | g. Hence, if f ∤ g then d is a constant, in which case gcd(f, g) = 1. We
then write 1 = af + bg. Multiply by h to get h = afh+ bgh. Since f divides the right
hand side then f | h. ▽

Theorem 21.2 (Unique Factorization in F[x]). Over a field, every non-constant monic
polynomial is the product of a unique collection of irreducible monic polynomials,
counting repetition.

Proof. In class. ▽

Theorem 21.3. Let F be a field and f ∈ F [x]. Then f is irreducible if and only if
the factor ring F [x]/(f) is a field.

Proof. Let R = F [x]/(f). If f is reducible then f = gh in F [x], where f divides
neither g nor h. It follows that (f) + g and (f) + h are two nonzero elements in R
whose product is ((f)+g)((f)+h) = (f)+f = 0. This shows that R is not an integral
domain, nor a field.

Conversely, let f be irreducible and (f) + c ∈ R be a nonzero element. Since f ∤ c
then gcd(f, c) = 1. By Proposition 20.7 there exist a, b ∈ F [x] such that af + bc = 1.
Therefore ((f) + b)((f) + c) = (f) + 1− af = (f) + 1, the unity in R. This shows that
(f) + c is a unit element, hence R is a field. ▽

Example. The polynomial f(x) = x2 + 1 ∈ R[x] is irreducible since f has no real
zero, hence R[x]/(x2 + 1) is a field. What are its elements? Using division algorithm
every g ∈ R[x] can be written g = q(x2 + 1) + r with r = 0 or deg r ≤ 1. Hence
R[x]/(x2 + 1) = {(x2 + 1) + a+ bx | a, b ∈ R}. Since x2 + 1 = 0 in this factor ring, we
can show that R[x]/(x2 + 1) ≈ {a + bi | a, b ∈ R, i2 = −1} = C. In a similar way, we
can see that the factor ring Q[x]/(x2 − 2) is actually the field Q[

√
2] of Exercise 15.4.

Theorem 21.4. Let F be a field and f ∈ F [x] with deg f = 2 or 3. Then f is reducible
if and only if f has a zero in F .

Proof. If we factor f = gh, then either g or h must be linear, say g = ax+ b, implying
that −ba−1 is a zero of f . Conversely, if f(a) = 0, then x − a is a factor of f by
Corollary 20.4, regardless of deg f . ▽

Example. The polynomial x2 + 1 has no zero over Z7 but has two zeros over Z5, i.e., 2
and 3. So it is irreducible in Z7[x] and reducible in Z5[x], where x2+1 = (x−2)(x−3).
Similarly, the existence or non-existence of a zero will prove that x3+x+1 is irreducible
over Z5 and Z7 but reducible over Z11 and Z13.
Remark. The preceding result does not hold for higher degree polynomials. For in-
stance, f = (x2 + 1)(x2 + 1) ∈ Q[x] is obviously reducible without any rational zero.
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Definition. The polynomial f ∈ Z[x] is primitive if f ̸= ag for any integer a ≥ 2 and
g ∈ Z[x]. In particular, a monic polynomial is always primitive.
Lemma 21.5. If f and g are primitive then fg is also primitive.
Proof. Let f =

∑
aix

i, g =
∑
bix

i and fg =
∑
cix

i. By way of contradiction suppose
there is a prime p | ci for all i. Since f is primitive, not all its coefficients are divisible
by p. Let j be the smallest such that p ∤ aj. Similarly k is the smallest such that p ∤ bk.
Since p | cj+k =

∑j+k
i=0 ai bj+k−i then p | ajbk, contradicting Euclid’s lemma. ▽

Theorem 21.6 (Gauss’ Lemma). Suppose that f ∈ Z[x] is primitive. If f is reducible
over Q, then f can be properly factored in Z[x].
Proof. Let f = gh ∈ Q[x]. Using least common denominator we can find a ∈ Q such
that ag ∈ Z[x] and is primitive. Similarly, bh ∈ Z[x] for some b ∈ Q. Then the product
agbh = abf ∈ Z[x] is primitive, and so ab = 1. Thus we factor f = (ag)(bh) in Z[x]. ▽

Example. Suppose we know that 6x2 + x− 2 = (3x− 3
2
)(2x+ 4

3
) ∈ Q[x]. Then we can

write 6x2 + x− 2 = 3
2
(2x− 1)2

3
(3x+ 2) = (2x− 1)(3x+ 2) ∈ Z[x].

Theorem 21.7 (Eisenstein’s Criterion). Let f(x) = a0 + a1x + · · · + anx
n ∈ Z[x]. If

there is a prime number p such that p2 ∤ a0, p | a0, p | a1, . . . , p | an−1, but p ∤ an,
then f is irreducible in Q[x].
Proof. We assume f is primitive, otherwise factor out the gcd without affecting the
proof. By contradiction suppose f can be factored in Q[x]. Then by Gauss’ lemma
we may write f(x) = (b0 + b1x+ · · · brxr)(c0 + c1x+ · · · csxs) with integer coefficients,
r, s ≥ 1. Since p | a0 = b0c0 then p | b0 or p | c0 but not both since p2 ∤ a0. Assume
p | b0 and p ∤ c0. Since f is primitive, let k < r be the least such that p ∤ bk. But
p | ak = b0ck + b1ck−1 + · · ·+ bkc0 hence p | bkc0—impossible since p ∤ bk and p ∤ c0. ▽

Example. The polynomial x5 + 6x3 − 12 is irreducible over Q because the theorem
applies with p = 3 (but not p = 2). Similarly, any polynomial of the form xn ± p is
irreducible over Q, if p is a prime number.
Theorem 21.8. Let f(x) = a0 + a1x + · · · + anx

n ∈ Z[x]. Suppose that p is a prime
such that p ∤ an. Taking mod p of the coefficients, if f is irreducible in Zp[x] then f is
irreducible in Q[x].
Proof. By contrapositive, assume that f = gh ∈ Q[x] with deg g, deg h < deg f . Since
deg f is unchanged when viewed mod p, then the inequality deg g, deg h < deg f also
holds in Zp[x]. So f is reducible over Zp. ▽

Example. Let f = 3x3 − x2 + 2x+ 7 ∈ Q[x], which corresponds to x3 − x2 + 1 ∈ Z2[x].
The latter is irreducible in Z2[x] (why?) so f is also irreducible over Q.
Remark. The converse is false, e.g., x2 + 1 is irreducible over Q and reducible over Z2.
Exercise 21. Complete this homework set before we continue to the next section.
1) Factor f = x3+1 and g = 3x4+5x2−1 using irreducible polynomials over the field

(a) Z2 (b) Z7 (c) Z11 (d) R.
2) Prove irreducible: (a) 2x3 + x + 6 ∈ Q[x] (b) x4 + x + 1 ∈ Z2[x] (c) x4 + 1 ∈ Q[x]

(Hint: substitute x = t+ 1 into Theorem 21.7) (d) 3x4 − 6x3 + 2x2 − x+ 7 ∈ Q[x].
3) Let f = a0+ a1x+ · · ·+ anx

n ∈ Z[x]. (a) Prove that if f(a/b) = 0 for some a, b ∈ Z
with gcd(a, b) = 1, then a | a0 and b | an. (Hence, if f is monic, then any rational
zero must be an integer.) (b) Use this to factor 2x4 + 3x3 − 2x2 − x+ 3 over Z.

4) Find all the irreducible polynomials in Z2[x] of degree (a) 2 (b) 3 (c) 4 (d) 5.
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22 Field Extensions
Definition. When we have a field K and a subfield F , we say that K is an extension
field over F .

Lemma 22.1. Let K be an extension field over F , and fix an element a ∈ K. Then
the set {g ∈ F [x] | g(a) = 0} is an ideal of F [x].

Proof. In class. ▽

Definition. Let a ∈ K, an extension field over F . In view of the fact that F [x] is a
principal ideal domain, we define the minimal polynomial of a over F to be the monic
polynomial f ∈ F [x] such that (f) = {g ∈ F [x] | g(a) = 0}. We will assume only the
case where a ∈ K is algebraic over F , i.e., when its minimal polynomial is nonzero.

Theorem 22.2. Let a ∈ K be algebraic over F . Then f ∈ F [x] is the minimal
polynomial of a over F if and only if f is monic, irreducible, and f(a) = 0. Moreover
with such f , if g(a) = 0 for any g ∈ F [x] then f | g and in particular deg f ≤ deg g.

Proof. Let f be the minimal polynomial; it is clear that f is monic and f(a) = 0. Then
if we factor f = gh, either g(a) = 0 or h(a) = 0. If say, g(a) = 0, then g ∈ (f) and
f | g, which is not so if g is a proper factor of f . Hence f is irreducible. Conversely,
let f2 ∈ F [x] with f2(a) = 0. Then f | f2, so if f2 is irreducible then f2 must be a
constant multiple of f . If f2 is also monic, then f2 = f . ▽

Remark. For such f , whenever g(a) = 0 we have f | g and deg f ≤ deg g. Hence f is
minimal in the sense that its degree is least possible under the condition that f(a) = 0.
Note that deg f = n if and only if n is the smallest exponent such that an ∈ K can be
written as a linear combination of 1, a, a2, . . . , an−1 using coefficients from F .
Example. Both

√
2 ∈ R and i ∈ C are algebraic elements over Q with minimal polyno-

mials x2 − 2 and x2 + 1, respectively. Applying the above remark, we can check that
x4 − 10x2 + 1 is the minimal polynomial of

√
2 +

√
3 (hence irreducible) over Q.

Definition. Let F ⊆ K be a field extension, and consider a subset S ⊆ K. We define
F (S) to be the smallest field containing S, such that F ⊆ F (S) ⊆ K. In particular,
when S = {a1, . . . , ak}, we shall simply write F (a1 . . . , ak) instead of F (S).
Example. Consider Q(

√
2). Being a field, Q(

√
2) ⊇ Q[

√
2] = {a+ b

√
2 | a, b ∈ Q}. The

latter we know is a field, hence Q(
√
2) = Q[

√
2].

Theorem 22.3. Let a ∈ K be an algebraic element over F with minimal polynomial
f ∈ F [x]. Then F (a) ≈ F [x]/(f).

Proof. The idea is to define the homomorphism θ : F [x] → F (a) by θ(g(x)) = g(a)
and show that ker(θ) = (f), then apply the fundamental homomorphism theorem. ▽

Corollary 22.4. Suppose that a, b ∈ K have the same minimal polynomial f over F .
Then F (a) ≈ F (b).

Proof. Both fields are isomorphic to F [x]/(f) by Theorem 22.3. ▽

Remark. To clarify some terminology, we say that a is a zero of a polynomial f when
we mean that f(a) = 0. Meanwhile, the term root refers to a solution of a polynomial
equation. Hence, a is a zero of f if and only if a is a root of f(x) = 0. Of course, do
distinguish a zero of a polynomial from the zero element of a ring.
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Theorem 22.5. Every non-constant polynomial f ∈ F [x] has a zero in some extension
field K over F .
Proof. We assume that f is irreducible for if g(a) = 0 for some factor g then f(a) = 0
too. Then K = F [x]/(f) is a field. Now let θ : F → K with θ(c) = (f) + c. We see
that θ is a one-to-one homomorphism, so F ≈ θ(F ), a subfield of K. Essentially the
element a = (f) + x ∈ K is a zero of f as f(a) = (f) + f(x) = (f), the zero of K. ▽

Corollary 22.6. For every f ∈ F [x] there is an extension field K over F such that
f = a

∏
(x− ai) ∈ K[x].

Proof. By the theorem f is divisible by (x − a), where a belongs to some extension
field over F . The proof is done by induction on the degree of f . ▽

Definition. We say that a polynomial f ∈ F [x] splits in some extension wherein f =
a
∏
(x − ai). The field F (a1, . . . , an) is called a splitting field for f over F . It can be

shown that any two splitting fields for the same polynomial are isomorphic.
Example. A splitting field for x2 + 1 over Q is Q(±i) = Q(i) = {a + bi | a, b ∈ Q}.
Over R, the same polynomial has splitting field C.

The field C of complex numbers has the property that every f ∈ C[x] splits without
the need of an extension field. Such a field is called algebraically closed. We state the
big theorem without a proof, which is usually provided in a complex analysis text.
Theorem 22.7 (The Fundamental Theorem of Algebra). Let f ∈ C[x] have degree n.
Then f has n complex zeros, counting multiplicity.
Definition. If (x− a)2 | f in its splitting field, we say that a is a multiple zero of f .

In order to classify multiple zeros, the next theorem borrows from Calculus the
term derivative of f =

∑
akx

k ∈ F [x], i.e., f ′ =
∑
kakx

k−1 ∈ F [x], where the integer
k is translated as the element k :=

∑j=k
j=1 1 ∈ F .

Lemma 22.8. For every f, g ∈ F [x] we have (f + g)′ = f ′ + g′ and (fg)′ = f ′g + fg′.
Proof. Exercise. ▽

Theorem 22.9. Let F ⊆ K be an extension and f ∈ F [x]. Then a ∈ K is a multiple
zero of f if and only if a is a zero of both f and f ′. Hence, f has a multiple zero in its
splitting field if and only if gcd(f, f ′) ̸= 1.
Proof. In class. ▽

Example. Consider f = 2x5+x3−x ∈ Z3[x], where f ′ = x4−1 and gcd(f, f ′) = x2+1.
(Verify!) Since gcd(f, f ′) ̸= 1, we see that f and f ′ have a common zero in some
extension field. In fact, f factors over Z3 as 2x5+x3−x = 2x(x2+1)2, hence the roots
±i ∈ Z3(i) each has multiplicity two.
Exercise 22. Complete this homework set before we continue to the next section.
1) Let a have minimal polynomial f over F . Prove that if n is the least integer for which

there exist c0, . . . , cn−1 ∈ F such that an =
∑n−1

k=0 cka
k, then f = xn −

∑n−1
k=0 ckx

k.
2) Find the minimal polynomial over Q for a = (a)

√
1 + 3

√
2 ∈ R (b)

√
7−

√
5 ∈ R

(c) i
√
i ∈ C (d) i+ 2

√
i ∈ C.

3) Determine if f ∈ F [x] has a multiple zero in its splitting field: (a) x3−3x−2 ∈ Q[x]
(b) 3x20 − x5 + 2x+ 1 ∈ Z5[x] (c) x5 − 2x3 + 2x ∈ Z5[x] (d) 2x7 + 3x5 − 1 ∈ Z7[x].

4) Prove that Q(i+
√
2) ≈ Q(

√
1− 2i

√
2) using Corollary 22.4.
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23 Finite Fields
Definition. By a finite field we mean a field with only finitely many elements, e.g., Z7.

Lemma 23.1. Let G be a finite group with identity e. Suppose that xk = e has at
most k roots in G for each k ≥ 1. Then G is cyclic.

Proof. Let |G| = n. For each a ∈ G the cyclic subgroup ⟨a⟩ has order d | n. And each
x ∈ ⟨a⟩ is a root of xd = e, hence all the roots to xd = e are given by ⟨a⟩. In particular
if an element g ∈ G has order d then g ∈ ⟨a⟩ and ⟨g⟩ = ⟨a⟩. So if there is an element of
order d in G then there are exactly ϕ(d) elements of order d. But recall (see Theorem
7.6 and its remark) that n =

∑
ϕ(d), where d ranges through all the divisors of n. It

follows that G does have ϕ(d) elements of order d for each d | n. In particular there is
an element of order n, hence G is cyclic. ▽

Theorem 23.2. Let F be a finite field. The multiplicative group F ∗ is cyclic.

Proof. This follows from the lemma because the group is finite and the polynomial
xk − 1 has at most k zeros over any field. ▽

Corollary 23.3. If p is a prime, the group Up is cyclic.

Proof. Up is the multiplicative group of nonzero elements of the finite field Zp. ▽

Definition. The characteristic of a field F , denoted by χ(F ), is the additive order of 1,
the unity of F . However, if |1| = ∞, we let χ(F ) = 0, e.g., χ(Zp) = p and χ(Q) = 0.

Theorem 23.4. If χ(F ) ̸= 0, then χ(F ) is prime. In particular, the characteristic of
a finite field is always a prime number.

Proof. Let χ(F ) = n > 1. We write n · 1 instead of
∑n

1 1. Now if n = ab with a, b < n,
then 0 = n · 1 = ab · 1 = a · 1× b · 1. Either a · 1 = 0 or b · 1 = 0 since a field has no zero
divisors, contradicting the minimality of n. Hence χ(F ) must be a prime number. ▽

Lemma 23.5. If χ(F ) = p, a prime, then F is an extension field over Zp. If χ(F ) = 0,
then F is an extension over Q.

Proof. Define θ : Z → F by θ(n) = n · 1. It is easy to verify that this map is a ring
homomorphism. If χ(F ) = 0 then θ is one-to-one, in which case F contains Z, as well
as Q since F is a field. If χ(F ) = p then ker(θ) = (p) and F contains Z/(p) ≈ Zp. ▽

Theorem 23.6. The number of elements in any finite field F is a prime power pk, for
some integer k and prime number p = χ(F ).

Proof. By the lemma, F is an extension over Zp, where p = χ(F ). Since F is finite, it
has a finite basis over Zp as a vector space, say {a1, . . . , ak}. (This is a linear algebra
fact which will be discussed again in Section 25.) Every element in F is then uniquely
determined by the form

∑
ciai, where 0 ≤ ci ≤ p− 1. Thus |F | = pk. ▽

Lemma 23.7. If χ(F ) = p then (a+ b)p = ap + bp for all a, b ∈ F .
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Proof. According to the binomial theorem,

(a+ b)p =

p∑
k=0

(
p
k

)
ap−kbk where

(
p
k

)
=

p !

k ! (p− k) !

The prime p divides all the binomial coefficients, except for k = 0 and k = p, where
they equal 1. Since χ(F ) = p, multiples of p vanish. Hence (a+ b)p = ap + bp. ▽

Theorem 23.8. Let q = pk, a prime power. There exists a field F with q elements.

Proof. We consider an extension K over Zp where xq −x = (x−a1) · · · (x−aq) ∈ K[x]
based on Corollary 22.6. Note that elements of Zp are among the zeros. We claim
that F = {a1, . . . , aq} is a subfield of K by showing that it is closed under addition
and multiplication. For all a, b ∈ F we have (ab)q = aqbq = ab and, by the lemma and
induction on k, (a + b)q = ((a + b)p)p

k−1
= (ap + bp)p

k−1
= aq + bq. To complete the

proof, we make sure that there is no multiple zero. This follows from Theorem 22.9
because (xq − x)′ = qxq−1 − 1 = −1 as χ(K) = p. ▽

Remark. The equality xq −x = (x− a1) · · · (x− aq) holds in F [x], for any finite field F
with q elements (Exercise 20.4). The proof above then implies that F = Zp(a1, . . . , aq),
the splitting field of xq−x over Zp. Later, in Theorem 28.1, we will prove that splitting
fields are unique for a given polynomial, but for now we show that finite fields are unique
for a fixed q.

Theorem 23.9. Any two finite fields of order q = pk are isomorphic.

Proof. Call the fields K and L, both extensions over Zp. By Theorem 23.2 we assume
K∗ = ⟨a⟩, so that K = Zp(a) ≈ Zp[x]/(f), where f is the minimal polynomial of a over
Zp. By Theorem 22.2, f | xq − x in Zp[x]. But xq − x = (x − b1) · · · (x − bq) ∈ L[x],
hence f(b) = 0 for some b ∈ L. Thus f is also the minimal polynomial of b over Zp and,
Corollary 22.4 implies K ≈ Zp(b), a subfield of L. We conclude that K ≈ L because
they have equal size. ▽

Definition. Without ambiguity, we now denote a finite field of order q = pk using the
notation Fq. The multiplicative group F∗

q, consisting of the q − 1 nonzero elements, is
cyclic with ϕ(q − 1) generators. In particular, Fp = Zp and F∗

p = Up.
Example. The polynomial f = x2 + x + 1 is irreducible over Z2. (Why?) The field
Z2[x]/(f) has order 4 since it is represented by a + bx with a, b ∈ {0, 1}. This is the
field F4 = {0, 1, α, 1+α}, where α satisfies α2+α+1 = 0, or α2 = 1+α. We construct
the Cayley tables for F4 below. Note that α and 1 + α are the two generators for F∗

4.

+ 0 1 α 1 + α
0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 0 1 α 1 + α
0 0 0 0 0
1 0 1 α 1 + α
α 0 α 1 + α 1

1 + α 0 1 + α 1 α

Example. Similarly, f = x2−2 is irreducible over F = Z11 and the factor ring F [x]/(f)
is the finite field F121. In this case, F∗

121 has ϕ(120) = 32 generators. In general, the
field Zp[x]/(f) has pn elements, if f ∈ Zp[x] is an irreducible polynomial of degree n.
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Theorem 23.10. The finite field Fpk has a subfield Fq if and only if q = pj with j | k.

Proof. Having the same characteristic, a subfield of Fpk is clearly Fpj with j ≤ k.
Looking at the multiplicative groups, we have pj − 1 | pk − 1, which holds if and only
if j | k. (Why?) Conversely, let j | k. Then xp

j−1 − 1 | xpk−1 − 1 and so the zeros of
xp

j − x, which compose Fpj , are zeros of xpk − x, which form Fpk . Thus Fpj ⊆ Fpk . ▽

Example. The above theorem allows us to identify all the subfields of a given finite
field Fq in much a similar way we do for groups using a subgroup lattice. The following
diagram depicts the subfield lattice for F312 .

F312

zz
zz
zz
zz

DD
DD

DD
DD

F36

{{
{{
{{
{{

DD
DD

DD
DD

F34

zz
zz
zz
zz

F33

CC
CC

CC
CC

F32

zz
zz
zz
zz

F3

Exercise 23. Complete this homework set before we continue to the next section.
1) Let F be a finite field with χ(F ) = p. Prove that F = {ap | a ∈ F} by establishing

the isomorphism θ : F → F defined by θ(a) = ap for all a ∈ F .
2) Construct the Cayley tables (both + and ×) for the finite field (a) Z2[x]/(x

3+x+1)
(b) Z3[x]/(x

2 + 1).
3) Show how to construct the finite field Fq for q = (a) 16 (b) 25 (c) 27 (d) 32.
4) Let F be a field of 2048 elements. Prove that F = Z2(a), for any element a ∈ F ∗

other than the unity.

24 Cyclotomic Polynomials
Definition. By an nth root of unity we mean a zero of xn − 1 in some splitting field
over the underlying field in context. This root is primitive if it is not a zero of xk − 1
for any k < n.
Example. The nth roots of unity in C are given by z, z2, . . . , zn = 1, where z = e2πi/n.
The graph below roughly displays the coordinates of the eight complex eighth roots of
unity, which are proportionally dispersed along the unit circle in the complex plane.

π
4 z8 = 1

z = eπi/4

z2 = i

z3

−1 = z4

z5

−i = z6

z7
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Theorem 24.1. Let z = e2πi/n ∈ C. There are exactly ϕ(n) primitive nth roots of
unity, given by zk for all positive integers k less than and relatively prime to n.

Proof. The multiplicative cyclic subgroup ⟨z⟩ has order n. The primitive nth roots of
unity are precisely the generators of ⟨z⟩; and the proof is all group theory. ▽

Definition. Let z1, . . . , zϕ(n) denote the ϕ(n) distinct primitive nth roots of unity in C.
The nth cyclotomic polynomial is given by Φn = (x − z1) · · · (x − zϕ(n)) ∈ C[x]. Note
that Φn is monic, of degree ϕ(n), and has no multiple zeros. In fact all the ϕ(n) zeros
of Φn in C are the ϕ(n) distinct primitive nth roots of unity.
Example. We have Φ1 = x−1 and Φ2 = x+1, whereas Φ3 can be computed as follows.

Φ3 = (x− e2πi/3)(x− e4πi/3) =

(
x− −1 + i

√
3

2

)(
x− −1− i

√
3

2

)
= x2 + x+ 1

Theorem 24.2. The factorization xn − 1 =
∏

d|n Φd holds over C.

Proof. Consider G = ⟨z⟩ again, partition it into subsets Gd = {a ∈ G | |a| = d}. Note
that Gd is nonempty if and only if d | n. Now a ∈ Gd if and only if a is a primitive dth
root of unity. Hence, xn − 1 =

∏
a∈G(x− a) =

∏
d|n
∏

a∈Gd
(x− a) =

∏
d|n Φd. ▽

Example. The above theorem can be used to compute Φn for all n > 1 in a recursive
manner. For example, x4 − 1 = Φ1Φ2Φ4 = (x− 1)(x+1)Φ4, from which we are able to
derive Φ4—and similarly for other values of n—by performing long division, e.g.,

Φ4 = x2 + 1 Φ12 = x4 − x2 + 1

Φ6 = x2 − x+ 1 Φ14 = x6 − x5 + x4 − x3 + x2 − x+ 1

Φ8 = x4 + 1 Φ15 = x8 − x7 + x5 − x4 + x3 − x+ 1

Φ9 = x6 + x3 + 1 Φ16 = x8 + 1

Φ10 = x4 − x3 + x2 − x+ 1 Φ18 = x6 − x3 + 1

Missing from the above list, when n is prime, Φn is given by the next theorem.

Theorem 24.3. If p is a prime then Φp = 1 + x+ x2 + · · ·+ xp−1.

Proof. Since xp − 1 = Φ1Φp then we have Φp = (xp − 1)/(x− 1). ▽

You might think that the coefficients of Φn are only ±1. That is false, but you will
not see a counter-example until Φ105. What is true, though, they are integers always:

Theorem 24.4. The cyclotomic polynomials Φn belong to Z[x] for all n ≥ 1.

Proof. We use induction based on xn−1 =
∏

d|n Φd, which allows us to assume xn−1 =

fΦn for some monic polynomial f ∈ Z[x]. This shows that Φn ∈ Q[x] by the division
algorithm there. Then by Gauss’ lemma, Φn ∈ Z[x] since it is monic. ▽

Definition. We name the extension Q(z) the nth cyclotomic field over Q if z is a
primitive nth root of unity in C. Note that Q(z) = Q(zk) if and only if gcd(k, n) = 1,
hence the notation Q(z) is not dependent on which primitive root we choose.

Theorem 24.5. The nth cyclotomic field Q(z) is isomorphic to Q[x]/(Φn).
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Proof. This follows from the next theorem, which asserts that Φn is irreducible, thus
establishing it as the minimal polynomial of z over Q. ▽

Theorem 24.6. The cyclotomic polynomial Φn is irreducible over Q.

Proof. Assume that Φn = fg ∈ Z[x], both monic and f is chosen irreducible. Let z be
a primitive nth root of unity for which f(z) = 0, hence f is the minimal polynomial of
z over Q. Choose a prime p as long as p ∤ n, so that zp is another primitive root. Then
zp is a zero of either f or g. We will first show that g(zp) = 0 is impossible.

If g(zp) = 0 then z is a zero of g(xp) and f | g(xp). We may write fh = g(xp) ∈
Z[x]. Reducing mod p, we have f ′h′ = g′(xp) ∈ Zp[x], degrees unchanged. But by
Lemma 23.7 g′(xp) = g′(x)p in Zp[x], where unique factorization applies. Here any
irreducible factor of f ′ divides g′ as well. Thus f ′g′ = Φ′

n implies that Φ′
n has multiple

zeros, hence xn − 1 does as well, over Zp. This is banned by Theorem 22.9: the
derivative is nxn−1 ̸= 0; only 0 is zero, and 0 is never a root of unity.

So we have f(zp) = 0. Now a typical primitive nth root of unity is zk with
gcd(k, n) = 1. In that case k = p1 · · · pr, not assumed distinct, such that pi ∤ n.
Writing zk = (zp1)p2···pr we see by induction that f(zk) = 0—for all ϕ(n) values of k.
This can happen only if f = Φn, irreducible over Z, and over Q by Gauss’ lemma. ▽

Exercise 24. Complete this homework set before we continue to the next section.
1) Compute Φn for each value of n ≤ 30.
2) Verify the following identities.

a) Φn(0) = 1 for all n ≥ 2
b) Φ2n(x) = x2

n−1
+ 1 for all n ≥ 1

c) Φ2n(x) = Φn(−x) for all odd n ≥ 3
d) Φn2(x) = Φn(x

n) for all n ≥ 1

3) Where p is prime, prove that Φp is irreducible over Q using Eisenstein’s criterion
and the substitution x = t+ 1.

4) Prove that gcd(xm − 1, xn − 1) = xgcd(m,n) − 1 in Q[x] by factoring both of them
into cyclotomic polynomials.

25 Algebraic Extensions
Definition. Let K be an extension field over F . The degree [K:F ] of K over F is the
dimension of K as a vector space over F . If this degree is a finite number, we say that
the field K is a finite extension over F , otherwise infinite.

Theorem 25.1. Let F ⊆ L ⊆ K be a tower of fields. Then [K:F ] = [K:L] × [L:F ]
if finite, and in particular, [L:F ] | [K:F ]. Hence, a finite extension over another finite
extension is finite over the bottom field.

Proof. The proof can be found in a linear algebra text. ▽

Definition. The degree of a ∈ K over F is the degree of the minimal polynomial of a
over F . If a ∈ K is not algebraic over F , then a is called a transcendental element.
Hence, we may say that a transcendental element of K over F has an infinite degree.

It is known, for instance, that the real numbers π and e are both transcendental
over Q; but this fact is not easy to demonstrate.
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Theorem 25.2. The element a ∈ K is algebraic of degree n over F if and only if
[F (a):F ] = n. Hence a is transcendental if and only if F (a) is an infinite extension
over F .

Proof. We have seen that F [x]/(f) = {(f)+a0+a1x+ . . .+an−1x
n−1 | ai ∈ F}, where

n = deg f . In this case {1, x, . . . , xn−1} is a basis of F [x]/(f) over F . Hence if a is
algebraic, then {1, a, . . . , an−1} is a basis of F (a) over F and [F (a):F ] = n. Conversely
if [F (a):F ] = n, then the set {1, a, . . . , an} is linearly dependent, i.e., there exists
g ∈ F [x] such that g(a) = 0 and so a is algebraic. By Theorem 22.3, [F [x]/(f):F ] = n,
where f is the minimal polynomial of a over F . Hence deg f = n. ▽

Example. The nth cyclotomic field Q(z) is an extension of degree ϕ(n) over Q, because
the minimal polynomial of z is given by Φn, whose degree is ϕ(n). On the other hand,
the extension R over Q is infinite. To see it, simply consider the intermediate subfield
Q(π), trusting that π is transcendental.

Lemma 25.3. If a, b ̸= 0 are algebraic over F then a± b, ab, ab−1 are algebraic over F .

Proof. We have field extensions F ⊆ F (a) ⊆ (F (a))(b) = F (a, b), where each is finite
over the one below it, according to Theorem 25.2. By Theorem 25.1 F (a, b) is finite
over F and, being a field, it contains a± b, ab, ab−1. Hence by Theorem 25.2 again, all
these elements are also algebraic over F . ▽

Theorem 25.4. Let K be an extension field over F . The set of all elements in K
which are algebraic over F is a subfield of K containing F .

Proof. This follows directly from the lemma. ▽

Theorem 25.5. Let K be the field of all real numbers which are algebraic over Q.
Then the degree [K:Q] is infinite.

Proof. The polynomial xn − 2 is irreducible according to Eisenstein’s criterion. Hence
the real number n

√
2 is algebraic of degree n over Q. It follows that [Q( n

√
2):Q] = n

and [K:Q] ≥ n. Since n is arbitrary, K must be an infinite extension. ▽

Definition. The extension fieldK over F is called an algebraic extension if every element
a ∈ K is algebraic over F .

Theorem 25.6. The extension field K over F is finite if and only if K is an algebraic
extension over F in the form K = F (a1, . . . , an) for some elements a1, . . . , an ∈ K.

Proof. If [K:F ] is finite then so is [F (a):F ] for any a ∈ K by Theorem 25.1, hence
by Theorem 25.2, K is an algebraic extension. The elements a1, . . . , an can be chosen
from any basis of K over F as a vector space. Conversely, suppose K = F (a1, . . . , an)
is algebraic over F . Since F ⊆ F (a1) ⊆ (F (a1))(a2) ⊆ · · · ⊆ K and each step is finite,
then [K:F ] is finite by Theorem 25.1. ▽

Theorem 25.7. Algebraic extension over an algebraic extension is again algebraic,
i.e., if L is algebraic over F and K is algebraic over L, then K is algebraic over F .

Proof. Let a ∈ K. Since a is algebraic over L, we have b0+b1a+ · · ·+bnan = 0 for some
elements bi ∈ L. These bi’s are algebraic over F , hence by Theorem 25.6, [M :F ] is finite
where M = F (b0, . . . , bn). Also a is algebraic over M , hence by Theorem 25.2 [M(a):M ]
is finite. By Theorem 25.1 then M(a) is finite over F . But M(a) = F (a, b0, . . . , bn),
hence by Theorem 25.6 again, a is algebraic over F . ▽
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Exercise 25. Complete this homework set before we continue to the next section.
1) Find the degree of Q(

√
2,
√
3,
√
5) over Q and find a basis for it.

2) Given that π is transcendental over Q, show that π2/3 is also transcendental.
3) Suppose that a and b are algebraic over F of degrees m and n, respectively. If

gcd(m,n) = 1, prove that [F (a, b):F ] = mn.
4) The extension field K over F is called simple if K = F (a) for some a ∈ K.

a) Prove that any extension field of prime degree is simple.
b) Prove that any finite extension over a finite field is simple.
c) If χ(F ) = 0, it is known that F (a, b) is simple for all algebraic elements a, b ∈ K.

Use this fact to prove that any finite extension over Q is simple.
d) Illustrate (c) by showing that Q(

√
2,
√
5) = Q(

√
2 +

√
5).

26 Applications in Classical Geometry
Consider the xy-plane of the usual cartesian coordinate system. A point on the plane
is constructible if it can be traced out using only an unmarked ruler and a compass.
The unit length is assumed, so that at least we are able construct all points with
integer coordinates. By dropping perpendicular lines against the x and y-axes, we see
that a point (a, b) is constructible if and only if the real number lengths a and b are
constructible.

Theorem 26.1. The real numbers which are constructible form a subfield of R.

Proof. Let a, b ∈ R be constructible. It is intuitively clear how to get the lengths a± b
using a ruler and a compass. It is also known how to construct two similar right-angle
triangles ABC ∼ A′B′C ′. To construct ab we let AB = 1, BC = a, and A′B′ = b.
Then by the properties of similar triangles, we have B′C ′ = ab. To make B′C ′ = 1/a,
simply let AB = a, BC = 1, and A′B′ = 1. ▽

Example. The theorem implies that all rational numbers are constructible. To see an
irrational number example, recall in grade school geometry how to construct

√
a from

a given length a, pictured below.

√
a

1
a

Theorem 26.2. The number a ∈ R is constructible only if a is algebraic over Q of
degree a power of 2.

Proof. Consider equations of lines and circles with coefficients in F = Q. We omit
details, but any two such graphs only intersect at constructible coordinates belonging
to F or to some quadratic extension F (

√
a0). Constructible numbers are all obtained in

this way, perhaps successively replacing F by F1 = F (
√
a0), then F1 by F2 = F1(

√
a1),

and on. In each step we have [Fn:Q] = 2n. ▽
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Remark. The proof actually gives a stronger statement: a is constructible only if a ∈ Fn

in some tower of extension fields Q ⊂ F1 ⊂ · · · ⊂ Fn ⊂ R, such that Fi+1 = Fi(
√
ai), of

degree 2 over Fi. In fact, this is a necessary and sufficient condition to be constructible
since, as seen in the previous example, square root numbers are constructible.
Example. A classical geometry challenge posed by the Greeks was to construct a square
whose area equals that of a given circle. This is the famous squaring the circle problem.
To construct such a square requires the length

√
π, which is not algebraic. With the

theorem, we know why this challenge is impossible to answer.

Corollary 26.3. An arbitrary angle cannot be trisected.

Proof. We show as a counter-example that α = 60o cannot be trisected because the
number a = cos 20o is not constructible. We use the trigonometric identity cos 3α =
4 cos3 α − 3 cosα to see that 8a3 − 6a − 1 = 0. Now the polynomial 8x3 − 6x − 1 is
irreducible over Q because it has no zero mod 5, for instance. Hence [Q(a):Q] = 3, not
a power of 2. ▽

Corollary 26.4. The regular heptagon is not constructible.

Proof. Let α = 2π/7. To construct the heptagon it is necessary that both sinα and
cosα be constructible, say they belong to some extension K of degree 2n over Q. Then
the primitive seventh root of unity z = cosα+ i sinα belongs to K(i), of degree 2 over
K. Hence [K(i):Q] = 2n+1. But note that Q(z) is an intermediate subfield of degree
ϕ(7) = 6. Since 6 ∤ 2n+1, this whole thing is impossible. ▽

Definition. The Fermat numbers are given by Fn = 22
n
+ 1 for integers n ≥ 0. A

Fermat prime is a Fermat number which is also a prime number.
The first five Fermat numbers are Fermat primes: 3, 5, 17, 257, 65537. However, it

is not yet known if there is any more Fermat prime.

Lemma 26.5. Any prime of the form 2m + 1 is a Fermat prime.

Proof. Exercise. ▽

Theorem 26.6. The regular polygon with n vertices is constructible only if n is a
product of some power of 2 and distinct Fermat primes.

Proof. Generalizing from the case n = 7, the previous proof shows it necessary that
ϕ(n) be a power of 2. If n = 2k

∏
peii then ϕ(n) = 2k−1

∏
pei−1
i (pi − 1). Hence ei = 1

for each i, and pi is a power of 2 plus one. By the lemma each pi is a Fermat prime. ▽

Remark. The converse of the theorem is good as well. In particular Gauss, who first
proved it, actually constructed a regular 17-gon in his teenage years. But for us to
prove it, we will have to wait for Galois theory.

Exercise 26. Complete this homework set before we continue to the next section.
1) Another ancient Greek problem is called doubling the cube. Can we construct a

cube double the volume of another constructible cube?
2) Which ones of these angles of degree (a) 8 (b) 9 (c) 15 (d) 40 are constructible?
3) Suppose that there are no more Fermat primes to be discovered. How many regular

polygons with an odd number of vertices can be constructed?
4) Using ruler and compass only, show how to construct a regular pentagon.
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27 Galois Groups
By an automorphism of a field F we mean an isomorphism θ : F → F . The following
are a few examples of a field automorphism.

1) Let θ : C → C be given by θ(a + bi) = a − bi for all a, b ∈ R. In particular, note
that θ(a) = a for all a ∈ R. It is not difficult to show that θ is an automorphism
of the complex number field, by verifying that it is one-to-one, onto, and that
θ((a+bi)+(c+di)) = θ(a+bi)+θ(c+di) and θ((a+bi)(c+di)) = θ(a+bi)θ(c+di).

2) The map θ(a+ b
√
2) = a− b

√
2 is an automorphism of the field Q(

√
2).

3) In any field, the identity map is clearly an automorphism. So is the inverse map of
any automorphism again an automorphism of the same field.

Definition. Let F be a field. Let Aut(F ) denote the set of all automorphisms of F . We
shall see that Aut(F ) is a group, called the automorphism group of F , under the usual
composition of functions.

Theorem 27.1. Given a field F , the set Aut(F ) is a group under composition.

Proof. The identity map, which we shall denote ι, serves as the identity element in
Aut(F ). The inverse of θ ∈ Aut(F ) is simply the inverse map. Other details of the
proof are left as an exercise. ▽

Theorem 27.2. Let K be an extension field over F . Then the set S = {θ ∈ Aut(K) |
θ(a) = a for all a ∈ F} is a subgroup of Aut(K).

Proof. It is clear that the identity map belongs to S. Equally obvious, if θ ∈ S so is
θ−1 ∈ S. Finally, if both θ(a) = a and ψ(a) = a, then ψ ◦ θ(a) = a to assure that S is
closed under composition. ▽

Definition. Let K be an extension field over F . The subgroup of Aut(K) given in
the preceding theorem is called the Galois group of K over F , and it is denoted by
Gal(K/F ) = {θ ∈ Aut(K) | θ(a) = a for all a ∈ F}. Conversely, if H is a subgroup of
Aut(K) then we call KH = {a ∈ K | θ(a) = a for all θ ∈ H} the fixed field of H. This
term will be justified in the next theorem where we will see that KH is indeed a field,
i.e., a subfield of K. In particular, if H ⊆ Gal(K/F ) then KH ⊇ F .

Theorem 27.3. Let H be any subgroup of Aut(K). Then the set KH = {a ∈ K |
θ(a) = a for all θ ∈ H} is a subfield of K. In particular when H is finite, we have
[K:KH ] = |H|.

Proof. Recall that θ(0) = 0 and θ(1) = 1 for any isomorphism. (The first equality
already holds in any homomorphism.) It follows that both 0, 1 ∈ KH . Now given
a, b ∈ KH , we have θ(a − b) = θ(a) − θ(b) = a − b if θ ∈ H, as well as θ(ab−1) =
θ(a)θ−1(b) = ab−1. All these suffice to claim that KH is indeed a subfield of K.

The second statement is not at all trivial. But we prefer to have you search for the
proof independently, requiring pretty much a knowledge in linear algebra. ▽

Example. Let θ ∈ Aut(C) as in the earlier example, where θ(a + bi) = a − bi. We
consider C as a field extension over R, and note that θ ∈ Gal(C/R). If ι denotes the
identity map then ⟨θ⟩ = {ι, θ} is a subgroup of Gal(C/R). In this case, C⟨θ⟩ = R.
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Proposition 27.4. Let K be an extension field over F . Suppose that θ ∈ Gal(K/F )
and f ∈ F [x]. Then a ∈ K is a zero of f if and only if θ(a) is too. In particular, both
a and θ(a) must have the same minimal polynomial over F .

Proof. The key is in showing that f(θ(x)) = θ(f(x))—exercise. ▽

Corollary 27.5. The complex number a+ bi is a zero of a polynomial f ∈ R[x] if and
only if a− bi is also a zero of f .

Proof. This follows from the example of θ(a+ bi) = a− bi. ▽

Corollary 27.6. Every polynomial f ∈ R[x] is irreducible over R if and only if f =
Ax2 +Bx+ C with either A = 0 or B2 − 4AC < 0.

Proof. Only the converse is unclear. By the fundamental theorem of algebra, f has at
least one complex zero, and by the previous corollary we may assume that a ± bi are
two zeros. Then (x− a+ bi)(x− a− bi) = (x− a)2 + b2 is a factor of f over R, hence
f is reducible if deg f ≥ 3. ▽

Theorem 27.7. Let K be an extension field over Q. Then Aut(K) = Gal(K/Q).

Proof. It suffices to show that if θ ∈ Aut(K) then θ(a) = a for all a ∈ Q. This holds
since θ(1) = 1 and for any n ∈ Z we have θ(n) = θ(n · 1) = n · θ(1) = n if n ≥ 0.
Similarly, if n < 0 we have θ(−n) = −n, hence θ(n) = −θ(−n) = n. Lastly, if m,n ∈ Z,
n ̸= 0, then θ(m/n) = θ(mn−1) = θ(m)θ(n)−1 = mn−1 = m/n. ▽

Example. Consider θ ∈ Aut(Q(
√
2)). By our theorems, θ(a+b

√
2) = a+bθ(

√
2), where

θ(
√
2) = ±

√
2, being the roots of x2 = 2. Hence either θ = ι, the identity map, or else

θ(a+b
√
2) = a−b

√
2, in which case θ2 = ι. Thus Aut(Q(

√
2)) = Gal(Q(

√
2)/Q) = Z2.

Exercise 27. Complete this homework set before we continue to the next section.
1) Prove that if we have subgroups H ⊆ H ′ ⊆ Aut(K), then KH ⊇ KH′ .
2) Prove that if we have subfields L ⊆ L′ ⊆ K, then Gal(K/L) ⊇ Gal(K/L′).
3) Show that Gal(Q(

√
2,
√
3)/Q) ≈ Z2 × Z2.

4) Show that Gal(Q(
√
2,
√
3,
√
5)/Q) has order 8.

28 Normal Extensions
Recall that a splitting field of a polynomial f ∈ F [x] over F is K = F (a1, . . . , an),
where a1, . . . , an are all the zeros of f in K. For example, the splitting field of x2 + 1
over Q is Q(i). Note that over R, the splitting field of x2 + 1 would be R(i) = R,
hence this definition is dependent upon the underlying field F . Nevertheless, the next
theorem affirms that the splitting field of f over F is unique, up to isomorphism.

Theorem 28.1. Suppose that K and K ′ are both splitting fields of f ∈ F [x] over F .
Then K ≈ K ′, with an isomorphism θ such that θ(a) = a for all a ∈ F .

Proof. Let [K : F ] = n. If n = 1 then f splits in F and K = K ′ = F with nothing to
prove. We proceed by induction. For n > 1, f has an irreducible factor g whose zeros
are not in F . Let a ∈ K and b ∈ K ′ be zeros of g. Then F (a) ≈ F (b) by Corollary
22.4. Moreover both K and K ′ are splitting fileds of f/g over F , hence K ≈ K ′ by the
induction hypothesis. ▽
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Definition. The Galois group of a polynomial f ∈ F [x] refers to the Galois group
Gal(K/F ) where K is the (unique) splitting field of f over F .
Example. We have seen that the Galois group of x2 − 2 over Q is {ι, θ} ≈ Z2, where
θ(a+ b

√
2) = a− b

√
2.

Theorem 28.2. Let a, b ∈ K, the splitting field of f ∈ F [x]. Then there exists
θ ∈ Gal(K/F ) with θ(a) = b if and only if a and b have the same minimal polynomial
over F .

Proof. Let a and b have the same minimal polynomial over F . Then F (a) ≈ F (b)
by Corollary 22.4, with an isomorphism such that θ(a) = b. This isomorphism can
be extended over K as in the proof of the preceding theorem—exercise. The converse
follows immediately by Proposition 27.4. ▽

Example. Let K = Q(
√
2,
√
3), the splitting field of (x2 − 2)(x2 − 3) ∈ Q[x]. We see

that every θ ∈ Gal(K/Q) will be determined by the evaluations θ(
√
2) and θ(

√
3).

Let us define θ(
√
2) =

√
2 and θ(

√
3) = −

√
3, together with ψ(

√
2) = −

√
2 and

ψ(
√
3) =

√
3. Note that ψ ◦θ(

√
2) = −

√
2 and ψ ◦θ(

√
3) = −

√
3. The theorem affirms

that Gal(Q(
√
2,
√
3)/Q) = {ι, θ, ψ, ψ ◦ θ}. Looking at the order of each element here,

it is not hard to deduce that this Galois group is none other than Z2 × Z2.
Definition. Let K be an algebraic extension field over F . We call K normal if for every
irreducible polynomial f ∈ F [x] with at least one zero in K, we have f splits over K,
i.e., all its zeros in K.

For example, the field C is normal over R if you recall the fundamental theorem
of algebra. On the other hand, the extension Q( 3

√
2) over Q is not normal because it

obviously contains one zero of x3 − 2 ∈ Q[x] but not the other two complex zeros.
Normal extensions have to do with normal subgroups of their corresponding Galois

groups. This is explained in the coming theorem, following the next lemma.

Lemma 28.3. Let K be a finite extension over F . Then K is normal if and only if K
is the splitting field of some polynomial over F .

Proof. Being finite extension, K = F (a1, . . . , an). Assume K is normal and let fi be
the minimal polynomial of ai over F , which therefore splits in K. It follows that K is
the splitting field of

∏
fi ∈ F [x].

Conversely, suppose that K is the splitting field of f ∈ F [x]. Let g ∈ F [x] be
irreducible with one zero a ∈ K. To complete the proof, given another zero b of g, we
will show that b ∈ K. Firstly, since g is irreducible, F (a) ≈ F (b) by Corollary 22.4.
Secondly, we may say that K(a) is the splitting field of f over F (a) and, similarly, K(b)
of f over F (b). In essence, by identifying F (a) with F (b), we see that K(a) ≈ K(b)
with an isomorphism that leaves F fixed. However, K(a) = K, so we conclude that
[K(b):F ] = [K:F ], i.e., that b ∈ K. ▽

Theorem 28.4. Consider the finite tower F ⊆ L ⊆ K, where both extensions K and
L are normal over F . Then Gal(K/L) is a normal subgroup of Gal(K/F ), with the
corresponding factor group Gal(K/F )/Gal(K/L) ≈ Gal(L/F ).

Proof. By the fundamental theorem of homomorphism, it suffices to construct a ho-
momorphism Θ : Gal(K/F ) → Gal(L/F ) which is onto and with ker(Θ) = Gal(K/L).
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For every θ ∈ Gal(K/F ) we define θ′ : L → F by θ′(a) = θ(a). We prove first
that θ′ ∈ Gal(L/F )—only one thing is unclear: that θ′(L) = L. The lemma allows us
to write L = F (a1, . . . , an), where ai’s are all the zeros of some f ∈ F [x]. Since then
θ(ai) = aj, we see that F ⊆ θ′(L) ⊆ L as subfields. At the same time, θ′(L) = θ(L) ≈ L.
Comparing degrees of extension forces θ′(L) = L.

Hence we now define Θ(θ) = θ′ and leave it an exercise to show that Θ is a homo-
morphism. Note that θ ∈ ker(Θ) if and only if θ ∈ Gal(K/F ) such that θ(a) = a for
all a ∈ L, i.e., if and only if θ ∈ Gal(K/L).

Finally to show onto, let θ′ ∈ Gal(L/F ). We may consider K a splitting field over
F , hence over L. The automorphism θ′ : L → L can therefore be extended to that of
K, say θ ∈ Aut(K), such that θ(a) = θ′(a) for all a ∈ L and in particular, θ(a) = a for
all a ∈ F . Hence θ ∈ Gal(K/F ) and Θ(θ) = θ′ as desired. ▽

Exercise 28. Complete this homework set before we continue to the next section.
1) Show that the Galois group of x2 − 3 over Q is the same as that of x2 − 2x− 2.
2) Describe the Galois group of x3 − 5 over Q.
3) In the finite tower F ⊆ L ⊆ K, explain why if K is normal over F , then K is also

normal over L.
4) An algebraic extension K is separable over F when the minimal polynomial of every

a ∈ K has distinct zeros in its splitting field. In the algebraic tower F ⊆ L ⊆ K,
show that if K is separable over F , so are K over L and L over F .

29 The Galois Correspondence
The main results of Galois theory will now be presented, but only over fields of charac-
teristic zero, e.g., F = Q. They generalize over fields of prime characteristic, provided
that the extension field in consideration is separable. (See the preceding exercise.) In
particular, next exercise, it can be shown that any extension over a field of characteristic
zero is separable.
Definition. Let K be a finite extension over F , where χ(F ) = 0. We call K a Galois
extension when |Gal(K/F )| = [K:F ].

Theorem 29.1. If χ(F ) = 0 and K is a Galois extension over F , then KGal(K/F ) = F .

Proof. Write G = Gal(K/F ) so we have |G| = [K:F ] and F ⊆ KG ⊆ K. But also
[K:KG] = |G| by Theorem 27.3. Thus [KG:F ] = 1 and KG = F . ▽

Indeed we are almost ready to establish the fundamental theorem of Galois theory.
However, given the purpose of this independent study, we will state the theorem without
proof, while at this point you should be able to comprehend what need to be verified
in order to claim the following statement.

Theorem 29.2 (Fundamental Theorem of Galois Theory). LetK be a Galois extension
over a field F with χ(F ) = 0. Then there is a one-to-one correspondence between the
intermediate subfields L, where F ⊆ L ⊆ K, and the subgroups H of Gal(K/F ).
The subfield L corresponds to the subgroup Gal(K/L), where KGal(K/L) = L; and the
subgroup H corresponds to the subfield KH , where Gal(K/KH) = H.
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Example. Consider the extension Q(
√
2,
√
3) discussed in the preceding section, whose

Galois group {ι, θ, ψ, ψ◦θ} is determined by θ(
√
2) =

√
2, θ(

√
3) = −

√
3, and ψ(

√
2) =

−
√
2, ψ(

√
3) =

√
3. This is a Galois extension since both the degree of the extension

and the order of the group equal four. We illustrate the fundamental theorem by
producing the two lattices side-by-side, for the subgroups and the subfields.
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qqq
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Over fields of characteristic zero, a Galois extension is not distinguished from a
normal extension, which in turn is just the splitting field of some polynomial over
the base field. This is stated as the next lemma, whose proof you are challenged to
construct and which leads to a second main result of Galois theory.

Lemma 29.3. Let K be a finite extension over a field F of characteristic zero. Then
K is Galois over F if and only if K is normal over F .

Theorem 29.4. Consider the tower F ⊆ L ⊆ K, where K is Galois over F and
χ(F ) = 0. Then L is Galois over F if and only if Gal(K/L) is normal in Gal(K/F ), in
which case Gal(K/F )/Gal(K/L) ≈ Gal(L/F ).

Proof. Together with the lemma, necessity has been proved in Theorem 28.4. Your
next project is to establish sufficiency—and to complete all the missing details of the
other proofs in this section. ▽

Exercise 29. Complete this homework set before we continue to the next section.
1) Let χ(F ) = 0 and f ∈ F [x] be irreducible. Use Theorem 22.9 to show that f has

no multiple zeros in its splitting field.
2) Let χ(F ) = p, a prime number, and f ∈ F [x] be irreducible. Prove that f has

multiple zeros if and only if f ∈ F [xp].
3) Verify the fundamental theorem of Galois theory by comparing the subgroup lattice

for the Galois group and the subfield lattice for the splitting field of each f ∈ Q[x]:
(a) x2 − 5 (b) x4 − 3 (c) x4 − x2 − 2 (d) x4 + x3 + x2 + x+ 1.

4) Prove that the Galois group of xp − 1 over Q is Up if p is a prime. For p = 17, in
particular, explain why there is a tower of subgroups of order 1, 2, 4, 8, 16, so that
each extension in the corresponding subfield tower has degree two. This leads to
the fact that the 17th root of unity is constructible, and so is the regular 17-gon.
Use this observation to write the proof for the converse of Theorem 26.6.

30 Solvable Polynomials
As we know, the quadratic equation ax2 + bx + c = 0 can be solved by an algorithm
that involves only addition, multiplication, and the extraction of radicals, in this case√
b2 − 4ac. This claim remains valid, in particular, with the biquadratic equation
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ax4 + bx2 + c = 0 upon the substitution x2 = t. In the exercises, you will be guided to
demonstrate that a general cubic equation can also be solved by radicals in this sense.
This concept of solvability leads to the following definition.
Definition. A polynomial f ∈ Q[x] is solvable (by radicals) if there exists a tower of
subfields Q ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Ks ⊆ C, where Ks is the splitting field of f , such that
for each i < s, the subfield Ki+1 = Ki(ai) for some ai ∈ Z and such that ani

i ∈ Ki for
some ni ∈ Z.
Example. The polynomial f(x) = x4 − 2 is clearly solvable by radicals. To meet the
definition, we construct the tower Q ⊆ Q( 4

√
2) ⊆ Q( 4

√
2)(i) = Q( 4

√
2, i), noting that

the four zeros of f are ± 4
√
2 and ±i 4

√
2.

As a motivational application of Galois theory, some quintic polynomials will prove
not solvable. It is not a coincidence that the next definition of a solvable group looks
curiously familiar, in view of the Galois correspondence with the tower of subfields
from a solvable polynomial.
Definition. A group G is solvable if there is a tower of subgroups {e} ⊆ G1 ⊆ G2 ⊆
· · · ⊆ Gs = G such that for each i < s, the subgroup Gi is normal in Gi+1 and such
that the factor group Gi+1/Gi is abelian.

For example, every abelian group G is readily solvable as we may let s = 1 in the
above definition. Also, it follows from the definition of simple groups that a non-abelian
simple group, e.g., the alternating group A5, is never solvable.

The truth is, a polynomial f ∈ Q[x] is solvable if and only if its Galois group is. We
will discuss only half of this remarkable fact, but enough to see why some polynomials
are not solvable by radicals.

Lemma 30.1. Let F be a field of characteristic zero and a ∈ F . Then the Galois
group of xn − a over F is solvable.

Proof. The splitting field of xn−a is F (z, r), where z is any primitive nth root of unity
and r = n

√
a ∈ R. Consider first the case z ∈ F and let θ, ψ ∈ Gal(F (r)/F ). These

two elements are determined by their evaluation on r, being zeros of the same minimal
polynomial, say θ(r) = rzj and ψ(r) = rzk for some appropriate exponents j and k.
Then

ψ ◦ θ(r) = ψ(r)ψ(zj) = rzkzj = rzjzk = θ(r)θ(zk) = θ ◦ ψ(r)

since both automorphisms leave z fixed. This shows that Gal(F (r)/F ) is abelian, hence
solvable. Now for the case z ̸∈ F , we look at the tower F ⊆ F (z) ⊆ F (z, r). Since F (z)
is the splitting field of xn − 1 over F , Galois theory applies to give the corresponding
subgroup tower

{e} ⊆ Gal(F (z, r)/F (z)) ⊆ Gal(F (z, r)/F )

As we have just demonstrated, Gal(F (z, r)/F (z)) is abelian and we know that it is
normal in Gal(F (z, r)/F ) with factor group Gal(F (z)/F ). It then suffices to show
that Gal(F (z)/F ) is abelian in order to conclude that Gal(F (z, r)/F ) is solable. This
is quite similar as before, for if θ, ψ ∈ Gal(F (z)/F ) then θ(z) = zj and ψ(z) = zk (being
nth roots of unity). It follows that ψ ◦ θ(z) = θ ◦ψ(z). And again such automorphisms
are determined on z, so that ψ ◦ θ = θ ◦ ψ as expected. ▽

Theorem 30.2. If f ∈ Q[x] is solvable, then the Galois group of f over Q is solvable.
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Proof. Here is the sketch. The preceding lemma makes way to use a proof by induction.
Along the way, you will need to verify the facts that given a group G with a normal
subgroup H, then G/H is solvable if G is, and G is solvable if H and G/H are. ▽

Example. Let f = 2x5 − 14x+ 7, which is irreducible over Q by Eisenstein’s criterion.
Using a graphing calculator one can check that f has exactly 3 real zeros, a, b, c; hence
there is a conjugate pair z, z′ of complex zeros to make the five of them. If G is the
Galois group then every automorphism in G is determined by a permutation of these
five zeros. Thus G can be viewed as a subgroup of the symmetric group S5.

Since [Q(a):Q] = 5 we see that the splitting field of f is an extension of degree a
multiple of 5 over Q. So is |G| a multiple of 5 according to Galois theory and in turn,
by Cauchy’s theorem, there must be an element of order 5 in G, say (1, 2, 3, 4, 5) ∈ G.
Moreover, there is the 2-cycle corresponding to the permutation that swaps z and z′,
say (1, 2) ∈ G. Now it is not hard to show that (1, 2, 3, 4, 5) and (1, 2) generate all of
S5, i.e., that G = S5. And finally, yet another exercise, you can verify that S5 is not
solvable, confirming that f is not solvable by radicals.

Exercise 30. Complete this homework set before we continue to the next section.
1) Solve the cubic equation ax3 + bx2 + cx+ d = 0 in the following manner.

a) Substitute x = y − b/(3a) to get y3 + py + q = 0.
b) Substitute y = 3

√
z − p/(3 3

√
z) to get 27z2 + 27qz − p3 = 0.

c) Solve for z and back substitute to find x.
d) Illustrate using the example x3 + 4x2 + 4x+ 3 = 0.

2) Show that the Galois group of x4 − 2 over Q is the dihedral group D4, then prove
that Dn in general is a solvable group.

3) Prove that a subgroup of a solvable group is again solvable. Hence, An is another
evidence that the symmetric group Sn is not solvable for all n ≥ 5.

4) Verify that {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is a normal subgroup of S4 and use
this fact to prove that S4 is solvable. Hence, every polynomial of degree four over
Q is solvable by radicals.
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