
WON Series in Discrete Mathematics and Modern Algebra Volume 4

GRAPH THEORY

Amin Witno

These notes have been prepared for students of Math 352 at Philadelphia University,
Jordan.1 Outline notes are not meant for self-study; No student is expected to fully
benefit from these notes unless they have regularly attended the lectures.

1 Definitions
Definition. A graph G is a composite of two finite sets which are commonly labeled
VG = {v1, v2, . . . , vn} and EG = {e1, e2, . . . , em}. Elements of VG are called vertices, and
elements of EG edges. An edge e is actually a set of exactly two vertices, e.g., we may
write e = {v1, v2} or simply e = v1v2.

When ab ∈ EG, we say that the vertex a is adjacent to b (hence also b to a). For
every vertex a ∈ VG, we define the neighbors of a to be the set of all vertices which are
adjacent to a, i.e., N(a) = {b ∈ VG | ab ∈ EG}. The number of neighbors is the degree of
the vertex, i.e., deg(a) = |N(a)|. Then, we define

∆(G) = max
a∈VG

deg(a) and degG =
∑
a∈VG

deg(a)

Also, the neighbors of a set of vertices S ⊆ VG is given by N(S) =
∪

a∈S N(a)

Example. Let VG = {a, b, c, d, e} and EG = {ab, bc, bd, be, cd, de}. This G can be repre-
sented by a picture (i.e., a graph) e.g.,
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Observe that N(a) = {b} and N(b) = {a, c, d, e}, and N({d, e}) = {b, c, d, e}. In this
case we have deg(a) = 1, deg(b) = 4, deg(c) = 2, deg(d) = 3, deg(e) = 2, hence
degG = 1 + 4 + 2 + 3 + 2 = 12. Note here that ∆(G) = 4.

1Copyrighted under a Creative Commons License ©2018–2023 Amin Witno
Last Revision: 28/01/2023 awitno@gmail.com
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Theorem 1 (Euler’s Theorem). The degree of any graph G is twice the number of its
edges, i.e., degG = 2 |EG|. In particular, the degree of any graph is an even number.

Proof. Every edge ab ∈ EG contributes two to the degree of G, one via deg(a) and one
via deg(b). Hence the summation of degrees equals twice the summation of edges. ▽

Definition. We call G a trivial graph when EG = ∅, i.e., when G has only vertices with
no edges. Other families of special graphs are now introduced:

1. A complete graph Kn is a graph of n vertices, all of which are adjacent one to
another. In particular, K3 is also called a triangle.

2. A complete bipartite graph Km,n consists of m+ n vertices that are partitioned into
two subsets, with m and n elements in each, such that two vertices are adjacent if
and only if they do not belong in the same subset.

3. A path Pn (n ≥ 2) is a graph with VPn = {v1, v2, . . . , vn} and EPn = {e1, e2, . . . , en−1},
where each ei = vivi+1. In this notation, we say that Pn is a path from v1 to vn.

4. A cycle Cn (n ≥ 3) is obtained from the path Pn by adding one more edge: vnv1.
Hence, Cn is also called a closed path of n vertices.

Example.
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Definition. A graph is called regular if all its vertices have equal degrees. In particular,
when a graph G has deg(a) = d for all a ∈ VG, then we say G is d-regular. If a graph is
not regular, then it is irregular.

Example. The graph K4 is regular, all cycles are 2-regular, and K2,3 is irregular.

Definition. If VG = {v1, v2, . . . , vn}, the degree sequence of the graph G is the sequence
(deg(vi)) of length n, arranged in (weakly) decreasing order. We call a random decreasing
sequence of positive integers graphical if we can find a graph with this degree sequence.

Example. The degree sequence of P5 is (2, 2, 2, 1, 1), hence the sequence (2, 2, 2, 1, 1) is
graphical. On the other hand, the sequence (4, 3, 2, 2, 2) is not graphical, because it is
impossible to have a graph G with odd degG = 4 + 3 + 2 + 2 + 2 = 13. (Why?)

Algorithm 2 (Graphical Degree Sequence). Given a decreasing sequence (d1, d2, . . . , dn)
of positive integers, we determine graphical or not graphical.

1. Delete the first integer, say k. (Initially k = d1.)

2. From what remains, subtract the first k numbers each by one. If we get a negative
number, the sequence is not graphical. If we get all zeros, the sequence is graphical.

3. Rearrange the resulting sequence in decreasing order, if necessary, and then repeat
the above two steps until a conclusion is obtained.
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Example. We illustrate the algorithm on the sequence (3, 2, 2, 1, 1, 1):

(3, 2, 2, 1, 1, 1) → (1, 1, 0, 1, 1) → (1, 1, 1, 1, 0) → (0, 1, 1, 0) → (1, 1, 0, 0) → (0, 0, 0)

We finish with all zeros, so the sequence is graphical.

Definition. Two graphs G and H are isomorphic to each other, written G ≃ H, if there
exists a bijection f : VG → VH such that ab ∈ EG if and only if f(a)f(b) ∈ EH for all
a, b ∈ VG.

Example. Note that K3 ≃ C3 (both are triangles) and that K2 ≃ K1,1 ≃ P2.

In essence, G ≃ H if and only if both graphs can be represented by identical pictures.
Hence it is necessary, but not sufficient, for G and H to have the same number of vertices,
the same number of edges, the same degree sequences, etc.

Example. Two non-isomorphic graphs can have identical degree sequence (3, 2, 2, 1, 1, 1).

◦ ◦ ◦ ◦ ◦

◦
̸≃

◦ ◦ ◦ ◦ ◦

◦
To prove that they are not isomorphic to each other, note that each graph has a unique
vertex of degree 3, call them a and w. So any bijection f must have f(a) = w to be
an isomorphism. This is impossible since N(a) consists of vertices with degree sequence
(2, 1, 1), whereas for N(w) we have (2, 2, 1).

Definition. A graph H is a subgraph of the graph G if VH ⊆ VG and EH ⊆ EG. We write
H ⊆ G and may say that G contains H. By abuse of notation, we also write H ⊆ G
when we mean that G contains a subgraph which is isomorphic to H.

Example. Note that P3 ⊆ C3, K2,2 ⊆ K2,4, C3 ̸⊆ K2,4, and K4 ⊆ K5.

Definition. A graph G is connected if there is a path from any vertex to any other vertex
in G, otherwise disconnected. A component of G is a maximal connected subgraph of G.
Hence, a graph is disconnected if and only it has more than one component.

Definition. An edge of G is called a bridge if removing it would increase the number of
components of G. So if G is connected, removing a bridge would make G disconnected.

Example. Note that in P4 every edge is a bridge, whereas C4 has no bridge.

Theorem 3. Let G be a connected graph with n vertices. Then there exists a connected
subgraph H such that |VH | = n and |EH | = n − 1. Hence, if any graph G is connected,
then |EG| ≥ |VG| − 1.

Proof. Assume n ≥ 2, so we can have a subgraph with 2 vertices and the edge v1v2. Since
G is connected, if n ≥ 3, then there is another vertex v3 ∈ N({v1, v2}), i.e., with either
v1v3 or v2v3 ∈ EG, so we can have a connected subgraph with 3 vertices and 2 edges.
And if n ≥ 4, there exists v4 ∈ N({v1, v2, v3}) with v1v4, v2v4, or v3v4 ∈ EG, so now we
can have a connected subgraph with 4 vertices and 3 edges. Repeating this process will
produce a connected subgraph H with VH = VG and |EH | = n− 1. ▽

Definition. The complement of a graph G is the graph G, where VG = VG and ab ∈ EG

if and only if ab ̸∈ EG.
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Example. We show here the picture of C5 next to its complement.
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Theorem 4. If G is disconnected, then G is connected.

Proof. Suppose that G is disconnected and consider two vertices a and b. Remember that
VG = VG. We will show there is a path from a to b in G.

If a and b are not adjacent in G, then they are in G, so such path (the edge ab) exists.
If ab ∈ EG, choose a vertex c belonging to a component of G not containing a, b. Such
a vertex c exists since G is disconnected. Then ac ̸∈ EG and cb ̸∈ EG, and we have the
path ac, cb in G. ▽

Definition. A graph G is self-complementary when G ≃ G. The preceding theorem says
that a self-complementary graph must be connected.

Example. Observe from the previous example that C5 ≃ C5. Another example is P4.

Recall from Linear Algebra that if M denotes an arbitrary matrix, we write [M ]ij to
refer to the (i, j) entry in M , i.e., the entry in the ith row and jth column of M .

Definition. Suppose that VG = {v1, v2, . . . , vn}. The adjacency matrix of the graph G is
the n× n matrix A given by

[A]ij =

{
1 if vivj ∈ EG

0 if vivj ̸∈ EG

Example. The adjacency matrix of C4, where E = {v1v2, v2v3, v3v4, v4v1}, is given by

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Definition. A permutation matrix is a square matrix obtained from the identity matrix
by reordering its rows. A known fact is that every permutation matrix P belongs to the
family of orthogonal matrices, i.e., that P−1 = P T .

Example. Let P be the permutation matrix obtained from the identity matrix by per-
muting its rows in the order of (1, 3, 5, 2, 4), i.e.,

P =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


Theorem 5. Let the graphs G and H have adjacency matrices A and B, respectively.
Then G ≃ H if and only if A = PBP T for some permutation matrix P .
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Example. We look again at the fact that C5 ≃ C5, this time with labeled vertices.

v1
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v5
C5 ≃ C5
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An obvious bijection is one which permutes the vertex indices (1, 2, 3, 4, 5) to (1, 3, 5, 2, 4),
thus the permutation matrix P given earlier. Denote the corresponding adjacency matri-
ces A and B, respectively, and verify that A = PBP T :

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0



0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0



1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0


Definition. Suppose that VG = {v1, v2, . . . , vn} and EG = {e1, e2, . . . , em}. Then the
incidence matrix of the graph G is the n×m matrix Z given by

[Z]ij =

{
1 if vi ∈ ej
0 if vi ̸∈ ej

Example. The incidence matrix of P4, where E = {v1v2, v2v3, v3v4}, is given by

Z =


1 0 0
1 1 0
0 1 1
0 0 1


Definition. Let G be a graph with vertices v1, v2, . . . , vn. The degree matrix of G is the
n× n diagonal matrix D given by [D]ii = deg(vi).

Theorem 6. Suppose that the adjacency matrix A and incidence matrix Z have been
given for the same graph G. Then ZZT = A+D, where D is the degree matrix of G.

Proof. For i ̸= j, we have

[ZZT ]ij =
∑
k≥1

[Z]ik[Z
T ]kj =

∑
k≥1

[Z]ik[Z]jk

If vivj ∈ E, then there is exactly one value of k for which [Z]ik = [Z]jk = 1, while the
rest either [Z]ik = 0 or [Z]jk = 0. In that case, both ZZT and A+D have 1 in their (i, j)
entries. If vivj ̸∈ E, no such k exists, and that entry will be 0 in both.

For i = j, we have

[ZZT ]ii =
∑
k≥1

[Z]ik[Z
T ]ki =

∑
k≥1

[Z]2ik =
∑
k≥1

[Z]ik

(Note the exponent 2 is redundant when squaring 0 or 1.) So [ZZT ]ii counts the number
of vertices adjacent to vi, which agrees with the diagonal entry [A+D]ii = [D]ii. ▽
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2 Trees
Definition. A graph G is cyclic if there exists Cn ⊆ G for any n ≥ 3. A graph which
contains no cycle is called acyclic. A tree is a connected acyclic graph.

Example. K4 is a cyclic graph. P4 is acyclic and connected, hence P4 is a tree.

Theorem 7. Let G be a connected graph. The following are all equivalent.

1. G is acyclic.

2. Every edge in G is a bridge.

3. The size of G is determined by |EG| = |VG| − 1.

4. There is a unique path between any two vertices in G.

Hence, a connected graph is a tree if and only if any one of the above conditions holds.

Proof. We will show ¬(4) → ¬(1) → ¬(2) → ¬(3): Being connected, we have a path from
any vertex a to b. If there are two such paths, their union is either a cycle or contains a
cycle, hence cyclic. Moreover, every edge belonging to a cycle is a non-bridge. And if a
non-bridge edge is removed, the resulting subgraph H remains connected. By Theorem
3, we have |EH | ≥ |VH | − 1 = |VG| − 1. Since |EG| = |EH |+ 1, then |EG| > |VG| − 1.

The last case is ¬(3) → ¬(4): Assume |EG| ̸= |VG| − 1. By Theorem 3, we have
|EG| > |VG| − 1 and there is a connected subgraph H with VH = VG and |EH | = |VG| − 1.
Hence there is an edge ab ∈ EG but ab ̸∈ EH . However, H connected means that we
already have a path from a to b in H. Thus the edge ab is a second such path in G. ▽

Definition. In a graph, a vertex of degree one is called a leaf.

Theorem 8. Every tree has at least two leaves. More precisely, if ni denotes the number
of vertices of degree i, then every tree has 2 +

∑
i≥3(i− 2)ni leaves.

Proof. Let (d1, d2, . . . , dn) be the degree sequence. For trees, dn ≥ 1 since connected and∑
di = 2(n − 1), so the number of leaves is minimum in the case (2, 2, . . . , 2, 1, 1). The

existence of a vertex of degree i ≥ 3 will reduce the number of 2s and increase the number
of 1s—exactly i− 2 of them. ▽

Definition. Any vertex of a tree can be designated as the root with respect to which
every other vertex is pictorially represented below the root from which, by uniqueness of
path, each level down reflects the length of the path to each vertex. A binary tree is a
rooted tree in which every vertex can have at most two neighbors below it, which are also
called children. We say a binary tree is labeled when each child is specified Left or Right.

Example. A labeled binary tree with vertex A as the root:

Root

L R
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Algorithm 9 (Traversal Algorithms for Labeled Binary Trees). We traverse the vertices
of a labeled binary tree according to one of these three algorithms.

1. Pre-Order Algorithm: Root → Left → Right

2. Post-Order Algorithm: Left → Right → Root

3. In-Order Algorithm: Left → Root → Right

Example. We show the order of vertex traversal using each algorithm applied on the
labeled binary tree given above.

1. Pre-Order: (A,B,D,E,Q,N,R,C, F,K,H,L,M )

2. Post-Order: (D,N,R,Q,E,B,K,L,M,H, F, C,A)

3. In-Order: (D,B,N,Q,R,E,A,C,K, F, L,H,M )

Definition. A spanning tree of a graph G is a tree H ⊆ G with VH = VG. We know, by
Theorem 3, that a spanning tree exists if and only if G is connected.

Example. P4 is a spanning tree of C4. Another example: any tree with 5 vertices, e.g.,
P5 or K1,4, is a spanning tree of K5.

Theorem 10 (The Matrix Tree Theorem). Let G be a connected graph with labeled
vertices, adjacency matrix A, and degree matrix D. Then any cofactor of the matrix
D − A will give the number of spanning trees of G.

Example. The graph G is given, together with the associated matrix D − A.
v1 v2

v3v4
??

??
??

??
??

??
?

G → D − A =


3 −1 −1 −1

−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


Recall that the cofactor Ci,j of a square matrix M is (−1)i+j times the determinant of the
matrix obtained from M by removing the ith row and jth column. For example, C3,1 = 8,
i.e., G has 8 spanning trees.

C3,1 = (+) det

 −1 −1 −1
2 −1 0
0 −1 2

 = 8

Algorithm 11 (Depth-First Search). Given a connected graph G with pre-ordered ver-
tices v1, v2, . . . , vn, we produce a rooted spanning tree.

1. Choose a vertex vk as the root.

2. Directly below this root, place the one adjacent vertex of least index which has not
been selected, called this the subroot.

3. Repeat Step 2 with respect to the new subroot. If there is no adjacent vertices left,
backtrack upward to the most immediate parent that has an unselected neighbor,
placing it in a new column.

4. Repeat until all vertices have been traversed.
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Example. For the given graph, we choose vertex (5) as the root. The DFS spanning tree
is shown with the vertex ordering according to the DFS sequence (5, 2, 4, 6; 8, 1; 7, 9, 3).

5 2 7

4 8 9

6 1 3
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Algorithm 12 (Breadth-First Search). Given a connected graph G with pre-ordered
vertices v1, v2, . . . , vn, we produce a rooted spanning tree.

1. Choose a vertex vk as the root.

2. Directly below this root, place all the adjacent vertices that have not been selected,
from the least index left to right. These are the immediate subroots.

3. Repeat Step 2 with respect to the new subroots, one at a time from left to right.

4. Repeat until all vertices have been traversed.

Example. For the given graph, we choose vertex (5) as the root. The BFS spanning tree
is shown with the vertex ordering according to the BFS sequence (5, 2, 4; 8, 6; 1, 7, 9; 3).

5 2 7
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Definition. A graph is weighted when every edge is associated with a positive numerical
value, called the weight. The weight matrix of a weighted graph G is just the adjacency
matrix of G in which the weight of each edge is revealed.

Example. A weighted graph G and its weight matrix W :

G =

v2v3

v4

v1 v5

12

5

60
??

??
??

8

������ 54

3��
��
�� 7
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91

↔ W =


0 0 5 3 91
0 0 12 8 54
5 12 0 60 0
3 8 60 0 7
91 54 0 7 0


Definition. A minimal spanning tree of a weighted graph is a spanning tree with the
least total weight. While a minimal spanning tree may not be unique, the least value of
its total weight, by definition, is unique.
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Algorithm 13 (Kruskal’s Algorithm). Given a connected weighted graph G, we generate
a minimal spanning tree T .

1. Choose an edge e1 of least weight to start with ET = {e1}.

2. Choose another edge from EG of least weight to be added to T , provided that the
resulting subgraph remains acyclic.

3. Repeat until |ET | = |VG| − 1.

Algorithm 14 (Prim’s Algorithm). Given a connected weighted graph G, we generate a
minimal spanning tree T , starting at a specified vertex v.

1. Choose an edge containing v with the least weight, say ET = {e1}.

2. Choose another edge from EG of least weight to be added to T , provided that the
resulting subgraph remains acyclic and connected.

3. Repeat until |ET | = |VG| − 1.

Example. For comparison, we show both Kruskal (1) and Prim (2) for the same given
graph. The MST sequence is (3, 4, 5, 7, 9) for Kruskal, and (9, 4, 5, 3, 7) for Prim, both
with total weight = 28.

◦ ◦

◦

◦◦ v

◦

6

��
��
��
��
��

3

OOO
OOO

OOO
OOO

OOO
OO

8

??????????

7

10

��
��
��
��
��
��
��
��
�

5
��
��
��
��
��4

OOOOOOOOOOOOOOOOO
9

??
??

??
??

??

(1) ◦ ◦

◦

◦◦

◦

e1

OOO
OOO

OOO
OOO

OOO
OO

e4

e3
��
��
��
��
��e2

OOOOOOOOOOOOOOOOO
e5

??
??

??
??

??

(2) ◦ ◦

◦

◦◦ v

◦

e4

OOO
OOO

OOO
OOO

OOO
OO

e5

e3
��
��
��
��
��e2

OOOOOOOOOOOOOOOOO
e1

??
??

??
??

??

3 Walking
Definition. A walk of length n is a sequence of edges v1v2, v2v3, . . . , vnvn+1. Unless the
walk is a path, these edges are not assumed distinct, and neither are the vertices. We
have a closed walk if vn+1 = v1.

Example. In particular, the path Pn is a walk of length n − 1, and Cn is a closed walk
of length n. Another example: ab, bc, cd, db, be, ec, cd is a walk of length 7.

Theorem 15. Let A be the adjacency matrix of a graph G with vertices v1, v2, . . . , vn.
The number of walks of length k from vi to vj is then given by [Ak]ij.

Proof. A walk of length 1 is an edge ij, and we have [A]ij = 1 if and only if this edge
exists. We proceed by induction. Observe that a walk of length k+1 from vi to vj consists
of a walk of length k from vi to a neighbor of vj, call it vm. The number of such walks is
the summation over all such vm, i.e.,

∑n
m=1 [A

k]im [A]mj = [Ak+1]ij as claimed. ▽

Theorem 16. The number of triangles in G is one-sixth of the trace of A3, i.e.,

#△ =
1

6

∑
i≥1

[A3]ii
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Proof. A triangle is a closed walk of length 3, so the preceding theorem applies. The
division by 6 is due to the 6 different ways to label the vertices of one triangle. ▽

Definition. The distance between two vertices a and b, denoted by d(a, b), is the length
of the shortest walk from a to b, if it exists; otherwise let d(a, b) = ∞.

Example. Note that the shortest walk is necessarily a path, and that d(a, b) = 1 if and
only if a and b are adjacent. It is also clear that d(a, a) = 0 for any vertex a.

Definition. Suppose that VG = {v1, v2, . . . , vn}. The distance matrix of the graph G is
the n× n matrix D given by [D]ij = d(vi, vj).

Example. The distance matrix of P4, when labeled in the standard way, is given by

D =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0


Algorithm 17 (From A to D). With the help of computer, we can retrieve the distance
matrix D from the adjacency matrix A.

1. Compute the matrices A,A2, A3, . . . , An, where n× n is the size of A.

2. Set [D]ii = 0, and for i ̸= j let [D]ij = k, the least exponent for which [Ak]ij ̸= 0. If
no such k exists, set [D]ij = ∞.

Definition. The diameter of a graph G, denoted by d(G), is the largest possible distance
between two vertices in G. Thus d(G) is the largest entry in the distance matrix of G.

Example. We have d(K4) = 1 and d(P4) = 3. In general d(G) = 1 if and only if G is a
complete graph. Note also that d(G) = ∞ if and only if G is disconnected.

Theorem 18. If d(G) ≥ 3, then d(G) ≤ 3.

Proof. Assume d(G) ≥ 3 and let v, w ∈ VG = VG. We will show that d(v, w) ≤ 3 in G.
We know there are a and b for which d(a, b) ≥ 3 in G. It is then false if both av, vb ∈ EG

or both aw,wb ∈ EG. So we have four cases to consider:
(1) EG contains av and aw, hence d(v, w) ≤ 2 in G.
(2) EG contains vb and wb, again d(v, w) ≤ 2 in G.
(3) EG contains av and wb. Since we also have ab ∈ EG, then d(v, w) ≤ 3 in G.
(4) EG contains vb and aw. Again with ab ∈ EG, we have d(v, w) ≤ 3 in G. ▽

Definition. If G is a weighted graph, we redefine the distance d(a, b) to be the least total
weight of all possible walks from a to b.

Example. Given the weight matrix W , we find the distance matrix D.

W =


0 0 5 3 91
0 0 12 8 54
5 12 0 60 0
3 8 60 0 7
91 54 0 7 0

 →

v2v3

v4

v1 v5

12

5

60
??

??
??

8

������ 54

3��
��
�� 7

??
??

??

91

→ D =


0 11 5 3 10
11 0 12 8 15
5 12 0 8 15
3 8 8 0 7
10 15 15 7 0


Note that this weighted graph has diameter d(G) = 15.



WON 4 – Graph Theory 11

Algorithm 19 (Dijkstra). For a chosen vertex vk in a weighted graph G, we determine
d(vk, x) for all x ∈ VG, i.e., we get the entire k-th row of the distance matrix of G.

1. Denote by S the set of vertices s which have already been labeled by (Ws). Initially,
we set S = {vk} and label it by (Wvk = 0).

2. For each vertex x ∈ N(S), say adjacent to y ∈ S whose edge xy has weight W, calcu-
late the number Wx = Wy +W . Add to S the vertex x for which the corresponding
Wx is least possible, and label x by (Wx). Hence, Wx = d(a, x).

3. Repeat until all vertices have been labeled.

Example. We show Dijkstra’s algorithm to evaluate d(v1, x) for each x ∈ VG.

v1 v2

v3 v4

v5 v6

v7 v8
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→ (0) (30)

(8) (14)

(18) (19)

(7) (27)
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??????????

e7

e5
e4

tt
tt
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tt
tt
tt

e6

JJJJJJJJJJJJ

The distance matrix has Row (1) = [0, 30, 8, 14, 18, 19, 7, 27], and the spanning tree
shows the shortest path from v1 to every other vertex. The spanning tree sequence
(7, 8, 6, 4, 5, 9, 11) resembles that of Prim’s, but instead of choosing the least weight in
each iteration, we consider the least accumulative weight relative to the starting vertex.

Definition. An Euler walk in a connected graph G is a walk through all the edges of G
without repeating any edge. If an Euler walk is closed, we call it an Euler circuit.

Example. An Euler walk from a to b is the sequence e1, e2, . . . , e8:
◦ a

◦

b◦
e3

JJJJJJJJJJJ

e2
ttttttttttt

e4

e6

e1

e5

??
??

??
??

??
??

??
??

??

e7

�����������������

e8

Theorem 20. A connected graph has an Euler walk from a to b, with a ̸= b, if and only
if a and b are the only vertices of odd degree. The graph has an Euler circuit if and only
if all vertices have an even degree.

Proof. Consider a vertex v with deg(v) = d. At some point during the walk, we will run
into v and out via another edge. If d > 2, this process will repeat, for as long as there are
untrodden edges containing v. This shows the necessity that d be even, unless v is our
starting vertex, or last, in which case d may be odd.

To prove sufficiency, assume first that every vertex in a graph G has an even degree.
Consider a path P of maximum length from v to w. Since deg(w) is at least two, w is
adjacent to another vertex already contained in P , else we could extend P to a longer
path. Hence G contains a cycle C. Since every vertex in C has an even degree, so does



WON 4 – Graph Theory 12

the subgraph whose edges are in G− C. Repeating the argument, we see that the edges
in G form the union of cycles none of which is disjoint from the rest.

We finish off by induction. One cycle is itself an Euler circuit. Assume that the union
of n such cycles has an Euler circuit, call it E. With one more cycle C, which meets E at
a vertex x, we have an Euler circuit for E ∪C by starting at x, circuiting around E back
to x, and cycling around C back to x.

Lastly, if deg(a) and deg(b) are the only odd degrees in G, we add one more edge, i.e.,
ab into G (perhaps making G a multigraph) so that every vertex now has an even degree.
We have shown that an Euler circuit exists for this extended graph. Hence, without this
extra edge, we could Euler walk from a and terminate at b. ▽

Definition. The Chinese Postman Problem asks for the minimal closed walk going
through every edge in a weighted graph. If exists, an Euler circuit would certainly be the
desired solution, otherwise such a walk would have to repeat one or more edges.

Algorithm 21 (Chinese Postman Problem). We determine the minimal closed walk
containing every edge in a given weighted graph.

1. Identify all vertices with odd degree. (By Euler’s theorem, their number is even.)

2. Pair up these odd vertices two by two, say {a1, b1}, {a2, b2}, . . . , {an, bn}, in such a
choice that minimizes the sum

∑
d(ai, bi).

3. Note that if we add “imaginary” edges aibi, the resulting graph would have all
vertices of even degree. Hence, solution to the Chinese postman problem is the
Euler circuit on this imaginary graph, which is really a walk through all the edges
of G plus the repetition of paths from ai to bi via the existing edges.

Example. The given graph has 4 vertices of odd degree: a, b, c, d. There are 3 possible
pairings:

d(a, b) + d(c, d) = (18) + (12 + 7 + 12) = 49

d(a, c) + d(b, d) = (29) + (7 + 12) = 48

d(a, d) + d(b, c) = (25 + 10) + (12) = 47 → min

The Chinese Postman solution is a closed walk through all edges, plus the minimum
repeated paths from a to d and from b to c. The total weight is 152 + 47 = 199.
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Definition. A Hamilton cycle in a graph G is a cycle Cn ⊆ G such that n = |VG|, i.e., a
closed walk through all the vertices in G without repeating any vertex except, of course,
the end vertex. If a Hamilton cycle exists, then G is called a Hamilton graph.

Example. K4 and K3,3 are Hamilton graphs. P4 is not a Hamilton graph. Note that a
Hamilton graph is necessarily connected.
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Theorem 22. If G is a Hamilton graph, then G contains no leaves, no bridges, and no
cut vertices. A cut vertex is one that disconnects the graph when removed.

Proof. A Hamilton cycle (or any cycle) is 2-regular, hence every vertex in G needs to have
degree at least two. Now a bridge is the only path between two components, so a closed
walk through both components must cross the bridge twice, hence not a cycle. Similarly,
a closed walk through a cut vertex must repeat the vertex. ▽

Example. We can see that if a vertex has degree two, then any Hamilton cycle must
contain both its edges. Using this fact, we prove that the given graph on the left is not
Hamilton: There are five vertices of degree two, indicated on the right by black dots. So
all the edges where these dots are on must be part of the Hamilton cycle, if exists.
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However, the incomplete solution has a vertex of degree 3, so no Hamilton cycle (or any
cycle) can have this subgraph.

Theorem 23. Let G be a connected graph with n vertices. If deg(v) ≥ n
2

for all v ∈ VG,
then G is a Hamilton graph.

Proof. Let |V | = n and P be a path of maximum length contained in G, given by
v1v2, v2v3, . . . , vk−1vk. Having maximum length means that the neither v1 nor vk is ad-
jacent to any other vertex outside P . Since deg(v1) ≥ n

2
, there are at least this many

vertices in P adjacent to v1, and similarly to vk. By the pigeonhole principle, we can find
vj, with 2 ≤ j ≤ k, such that both v1vj, vj−1vk ∈ E. This gives us a cycle given by the
closed walk

v1v2, . . . , vj−2vj−1, vj−1vk, vkvk−1, . . . , vj+1vj, vjv1

Any additional vertex connected to this cycle would contradict the maximality of the
length of P . Hence k = n, i.e., we have a Hamilton cycle. ▽

Definition. The Traveling Salesman Problem asks for a Hamilton cycle of least total
weight in a given weighted graph. One way to solve the problem is to try out all possible
Hamilton cycles, which is reasonable only in small cases.

Algorithm 24 (Traveling Salesman Problem). We find all Hamilton cycles of a given
weighted graph in order to choose one with least total weight. We assume that the graph
is relatively small or has mostly vertices of degree two.

Example. The given graph on the left has two vertices of degree two, labeled a and f as
shown on the right with a sketch of the incomplete Hamilton cycle.
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If we start from e and complete the cycle, there remain b and d. This gives 2! different
Hamilton cycles, i.e., (1) eacfg − db− e and (2) eacfg − bd− e.

(1)

c

a b

g

e

f

d
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(2)

c

a b

g

e

f

d

JJJ
JJJ

JJ

tttttttt XXXXX
XXXXX

XXXXX
XXXXX

XXXX

ttt
ttt

tt

We check that the second Hamilton cycle has the lesser total weight of 99.

4 Coloring
Definition. The set notation X ⊔ Y is the disjoint union of X and Y , i.e., the ordinary
set union X ∪ Y but with the assumption that X ∩ Y = ∅. A graph G is bipartite if
VG = X ⊔ Y and two vertices can be adjacent only if they belong to opposite subsets. In
other words, a bipartite graph is just a subgraph of Km,n. We call X and Y the bipartition
subsets of G.

Example. The cycle C6 with edges {ab, bc, cd, de, ef, fa} is bipartite with X = {a, c, e}
and Y = {b, d, f}. In this case, C6 ⊂ K3,3. Note that if G is disconnected, then G is
bipartite if and only if each component is bipartite.

Theorem 25. If G is a closed walk of odd length, it contains a cycle of odd length.

Proof. A closed walk of length three is C3, so the claim is true. We proceed by induction,
assuming the theorem has been proved if the length is less than n. If G is the walk
v1v2, v2v3, . . . , vnv1 with no repeated vertex, then G ≃ Cn and we are done. Suppose now
vi = vi+j. Then G is the union of two closed walks: the one from vi to vi+j, and the walk
from v1 to vi joined by that from vi+j to v1. One of the two must have an odd length
because their sum is odd, and which is clearly less than n. By our hypothesis, that walk
contains a cycle of odd length. ▽

Theorem 26. A graph G is bipartite if and only if there is no cycle of odd length.

Proof. If G is bipartite and v1v2, v2v3, . . . , vnv1 is a cycle, then by definition we deduce
that v1, v3, v5, . . . all belong to the same bipartition subset. In particular, v1vn ∈ EG, so
n must be even. Conversely, let G contain no odd cycle. We assume that G is connected,
or else it suffices to consider a component of G. Fix a vertex v and set

X = {w ∈ VG | d(v, w) is even} and Y = {w ∈ VG | d(v, w) is odd}

It is clear that VG = X ⊔ Y . Assume a, b ∈ X and we will show ab ̸∈ EG. (The case
a, b ∈ Y is symmetrical). Now there is a path of even length from v to a and also to b. So
if ab ∈ EG, then the union of ab and these two paths makes a closed walk of odd length.
Then by Theorem 25, G would have an odd cycle, a contradiction. ▽

Definition. Let G be a bipartite graph with VG = X ⊔ Y, and assume from now on that
|X| ≤ |Y | (otherwise, we swap X and Y ). Every edge ab ∈ EG can be viewed as a relation
(a, b) ∈ X × Y . We say that G has a complete matching when we can find a set of these
relations (i.e., edges) that form a one-to-one function from all of X into Y .
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Example. A complete matching here can be {av, by, cz, dx}, or {az, bw, cx, dy}, etc.

a b c d
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Theorem 27 (Hall’s Theorem). Let G be bipartite with VG = X ⊔ Y . Then G has a
complete matching if and only if |S| ≤ |N(S)| for every subset S ⊆ X.

Proof. The necessary condition |S| ≤ |N(S)| is required by the definition of one-to-one
function. Now assume that this condition is satisfied and assume also, by induction, that
we have a matching M contaning all of X except one vertex v ∈ X. Observe that if we
have path P = {v1v2, v2v3, . . . , v2n−1v2n} such that vkvk+1 ∈ M if and only if k is even,
and that both v1, v2n ̸∈ M , then replacing the edges in M ∩ P by those in P − M will
produce a new matching M ′ which contains one more vertex from each X and Y . To
complete the induction, we will produce such an “alternating” path from v1 = v.

Since N(v) is non-empty, we can find w1 ∈ Y which is adjacent to v. If w1 ̸∈ M then
vw1 is such path, we are done. Else, there is an edge v1w1 ∈ M . Since |N({v, v1})| ≥ 2,
we have w2, adjacent to either v or v1. If w2 ̸∈ M , again we have an alternating path from
v to w2, so assume there is another edge v2w2 ∈ M . Continuing in this way, seeing that
|N({v, v1, v2, . . . vk})| > k in each step, we will exhaust the vertices in Y ∩M , forcing a
vertex w ̸∈ M to which there is an alternating path from v. ▽

Example. In the bipartite graph below, a complete matching is not possible because we
have a counter-example with S = {a, c, d}, for which |S| > |N(S)|.
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Theorem 28. Suppose that a regular graph G is bipartite with VG = X ⊔ Y . Then
|X| = |Y | and G has a complete matching.

Proof. Assume that G is d-regular with |X| = n, so that |EG| = dn. Now if |Y | = m,
then we have |EG| = dm, hence it is necessary that m = n. Furthermore, any set S of k
vertices in X corresponds to dk edges which are connected to k vertices in Y . We then
have |N(S)| = |S| and a complete matching by Hall’s theorem. ▽

Definition. The term graph coloring means assigning a color to every vertex in G in such
a way that adjacent vertices have distinct colors. The chromatic number χ(G) stands for
the least possible number of colors needed to perform this task.

Note that χ(G) = 1 if and only if G is trivial. If not trivial, then χ(G) = 2 if and
only if G is bipartite. It is clear that if H ⊆ G, then χ(H) ≤ χ(G). In particular, if G is
disconnected, then χ(G) is simply the largest chromatic number among the components
of G.
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Example. We claim that χ(C5) = 3. To prove this, first we show that 3 colors are
sufficient (demonstrate it), then we show that 2 colors do not suffice, e.g., since odd cycle
is not bipartite.
Algorithm 29 (Bi-Coloring). Given a graph G, we apply two colors to determine bipar-
tite or not bipartite and if so, we produce the bipartition subsets.

1. Any vertex can be chosen to start with by assigning the color black.

2. Let S denote the set of vertices which have already been colored. Now color every
uncolored vertex in N(S) white or black as determined by their adjacent color. If
this is not possible, then G is not bipartite.

3. Repeat until all have been colored, in which case the vertices are bipartitioned
according to their colors, black or white.

Example. Below we start at vertex b (black) and successfully color all vertices black or
white. Omitting details, the bipartition reconstructed on the right shows that the graph
is bipartite.
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Theorem 30. Let χ(G) = k. Then the graph G has a vertex v such that deg(v) ≥ k− 1,
and at least k such vertices exist.
Proof. Let H be a minimal subgraph of G with χ(H) = k, i.e., such that any subgraph
of H will have chromatic number less than k. It is clear that H has at least k vertices.
To complete the proof, we claim that in H we have deg(v) ≥ k − 1 for all v ∈ VH . This
is true because by the choice of H, the subgraph of H minus a vertex v can be colored
with k − 1 colors. So if deg(v) ≤ k − 2, then we can assign v one of these k − 1 colors to
complete coloring H, and we would have χ(H) ≤ k − 1, a contradiction. ▽
Theorem 31. For any graph G, we have χ(G) ≤ ∆(G) + 1.
Proof. By the theorem, there is v ∈ VG such that ∆(G) ≥ deg(v) ≥ χ(G)− 1. ▽
Algorithm 32 (Sequential Coloring). We color a graph G with pre-ordered vertices
VG = {v1, v2, . . . , vn} as follows. Let c1, c2, . . . denote colors, and for i = 1, 2, . . . , n, we
assign to vi the color cm with the least possible value of m.
Example. The graph G below has 9 ordered vertices. The Sequential Coloring algorithm
yields the color sequence (1, 2, 3, 1, 4, 2, 1, 3, 5). These 5 colors may not be minimum, so
χ(G) ≤ 5. The algorithm does not determine the chromatic number, and a different
vertex ordering will probably result in a different number of colors.
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Algorithm 33 (Welsh-Powell Coloring). We color the vertices VG = {v1, v2, . . . , vn} by
prioritizing vertices of larger degrees.

1. Re-order the vertices w1, w2, . . . , wn from the largest degree to the smallest.

2. For i = 1, 2, . . . , n, assign to wi the color c1 whenever possible.

3. For i = 1, 2, . . . , n, assign to wi the color c2, if yet uncolored, whenever possible,
and repeat in like manner using c3, c4, . . . until all have been colored.

Example. Using Welsh-Powell algorithm, we re-color the same graph from the previous
example, showing the vertex re-ordering and its color assignment below:

vi v1 v2 v3 v4 v5 v6 v7 v8 v9
deg(vi) 2 5 5 4 5 3 2 2 4

wi v2 v3 v5 v4 v9 v6 v1 v7 v8
color(wi) c1 c2 c3 c2 c1 c4 c3 c3 c3

→

c3 c1 c3

c2c3c2

c3 c1 c4
??

??
??

??
????????????

��
��
��
��
��

??
??

??
??

??

The resulting color sequence is (3, 1, 2, 2, 3, 4, 3, 3, 1), only 4 colors this time. Currently
no known coloring algorithm can effectively determine χ(G).

Definition. A graph is planar if it can be drawn in the plane such that no edges are
crossing each other. This particular drawing of a planar graph is called a plane graph.

Example. We show two ways of drawing the graph K4 without crossing edges:
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Similarly, we can show that K2,3 is planar and later, that K5 and K3,3 are not. Note that
if G is disconnected, then G is planar if and only if each component is planar.

Algorithm 34 (Planarity Test for Hamilton Graphs). Given a Hamilton graph G, we
determine planar or not planar.

1. Draw a Hamilton cycle H in a shape somewhat circular.

2. Transform H into G by adding the remaining edges e1, e2, . . . , em, all of which are
drawn interior to the cycle H.

3. Let K be the graph with vertices VK = {e1, e2, . . . , em} such that ei, ej are adjacent
in K if and only if they are crossing each other in H. Hence, the number of edges
in K is the number of intersections inside H.

4. Determine whether K is bipartite or not bipartite. The graph G is planar if and
only if K is bipartite.
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Example. The given graph G is on the left. First, we find the Hamilton cycle aebgcfda
and draw the remaining edges inside this cycle.
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The resulting graph K has 7 vertices (from the edges inside H) and 8 edges (from the
intersections inside H). K is proved bipartite by 2-coloring, so G is planar. We draw the
plane graph after moving the (–) edges outside of H while keeping the (+) inside.
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With this algorithm we can have a proof that neither K5 nor K3,3 is planar.
Definition. A plane graph partitions the plane into subsets which are called regions.
In other words, regions refer to the bounded areas interior to the plane graph, plus one
unbounded exterior.
Example. The plane graph of K4, pictured earlier, has four regions.
Theorem 35 (Euler’s Formula). Suppose that a connected plane graph has V vertices,
E edges, and R regions. Then

V +R = E + 2

Proof. If the graph is a tree, then E = V − 1 and R = 1 as there is no bounded region.
Hence, the identity V + R = E + 2 holds in a tree. A graph that is not a tree can be
constructed by adding edges to its spanning tree. Note that each additional edge will add
one to the bounded regions, hence Euler’s formula is preserved. ▽
Theorem 36 (Euler’s Planarity Test). Suppose that G is connected and that V ≥ 3.

1. If E > 3V − 6, then G is not planar.

2. If E > 2V − 4 and G has no triangles, then G is not planar.
Proof. Given a fixed number of edges, the number of regions is maximized when every
region is the interior of a triangle. (With higher polygons, a diagonal edge can be added
while maintaining planarity.) Since every edge borders two regions, this maximum R is
given by the relation Rmax = 2E

3
. Then, by Euler’s formula,

E = V +R− 2 ≤ V +
2E

3
− 2

which simplifies to E ≤ 3V − 6. This inequality holds for planar graphs, hence Euler’s
planarity test is justified. In cases where G has no triangles, we will have Rmax = 2E

4
, and

the claim will follow similarly. ▽



WON 4 – Graph Theory 19

Example. The graph K5 has 10 edges, where 10 > 3(5) − 6, hence not planar. As for
K3,3, we have 9 edges, 6 vertices, and no triangles (bipartite has no odd cycle), hence not
planar since 9 > 2(6)− 4.

Definition. If we replace any edge ab ∈ EG by the path {av, vb}, where v is a new vertex,
then the resulting graph is said to be homeomorphic to G. Now homeomorphism is an
equivalence relation among graphs in which two of them are homeomorphic if one can be
obtained from the other by iterating a finite number of replacements in this manner.

Example. We sketch below how to obtain C6 by applying the procedure twice to C4. In
this way, it is not hard to see that any two cycles are homeomorphic.

◦ ◦

◦◦

→

◦ ◦

◦◦

◦ →

◦ ◦

◦◦

◦

◦

Theorem 37 (Kuratowski’s Theorem). A graph is planar if and only if it contains no
subgraph homeomorphic to K5 or K3,3.

Example. The Peterson graph is the graph shown on the left. We can prove that the
Peterson graph is not planar by producing a subgraph which, after a little modification
in the way it is drawn, is shown to be homeomorphic to K3,3.
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Definition. The dual graph G∗ of a planar graph G is the graph whose vertices are the
interior regions from the plane graph of G, and they are adjacent if and only if the regions
are bounded by a common edge.

Example. We show below a plane graph G with five interior regions, next to its dual
graph G∗ with these five as vertices.
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Theorem 38. The dual graph of any plane graph is planar. Conversely, every planar
graph is the dual graph of some plane graph.

Proof. For each region r of the plane graph G, put the vertex r ∈ VG∗ right inside this
region. So for two neighboring regions, the edge rs can be drawn as a curve that crosses
the edge bordering the two regions and, by definition, only this edge. Hence the edges in
G∗ can be drawn without crossing one another, and this procedure can also be done in
reverse. ▽
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Definition. A plane graph somewhat looks like a world map in which the interior regions
represent countries. We say two countries are neighbors when they share a common edge
boundary. (Having a common vertex does not make a neighbor.) In fact, map coloring
was an early motivation for planar graphs.

We define the chromatic number of a map to be the least number of colors enough to
color the countries such that neighboring countries have distinct colors. In other words,
the chromatic number of a map G is given by χ(G∗).
Theorem 39. If G is planar, then χ(G) ≤ 6.
Proof. Suppose that G is planar with n vertices. We claim that there exists a vertex
w ∈ VG such that deg(w) ≤ 5; If this were false, we would have degG ≥ 6n and then, by
Euler’s theorem, |EG| ≥ 3n, contradicting Euler’s planarity test.

We proceed by induction on n. Since n ≤ 6 is trivially true, we assume the theorem
holds for n−1 vertices. In particular, the subgraph of G obtained by removing the vertex
w and its associated edges is planar, hence can be colored with 6 colors. We may extend
this coloring for all of G by assigning a color to w. Since w has at most 5 neighbors, at
least one color from those 6 can be chosen for w, giving us χ(G) ≤ 6. ▽
Theorem 40. If G is planar, then χ(G) ≤ 5.
Proof. If G has 5 vertices or less, there is nothing to prove. Again by induction, we assume
that G has n vertices and that the claim is true for any planar graph with less vertices
than n. As in the preceding proof, G has a vertex w with deg(w) ≤ 5. By the color-degree
of a vertex we mean the number of distinct colors of vertices which are adjacent to it. Now
because the subgraph G minus w can be colored with at most 5 colors, if the color-degree
of w is 4 or less, then we easily assign to w one of the 5 colors to complete the inductive
step.

The last case is when deg(w) = 5 with all five adjacent vertices, v1, v2, v3, v4, v5, having
distinct colors ci. Without loss of generality, we have labeled these vertices such that v3
is interior of the region bounded by the rays wv1 and wv2, while v4 lies exterior of it.

v1

v3

v2v5

v4
w
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66
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Consider the subgraph G1,2 of G consisting of all vertices which have been colored either
c1 or c2, with their associated edges. Note that v1, v2 ∈ G1,2. Suppose first that v1 and
v2 belong to different components in G1,2. In the component containing v1, we swap c1
and c2. Doing so does not violate the rules of vertex coloring, but it does decrease the
color-degree of w to 4 as v1 and v2 now have the same color, i.e., c2.

But if v1 and v2 belong to the same component, then we have a path from v1 to v2
which becomes a cycle when combined with v2w and wv1. Since G is planar, this cycle
must enclose either v3 or v4, but not both. Again, since G is planar, v3 and v4 then
belong to different components in the subgraph G3,4, defined in a similar way. This time,
we decrease the color-degree of w by swapping c3 and c4 in the component containing v3,
and the proof is complete. ▽
Theorem 41 (The Four-Color Theorem). If G is planar, then χ(G) ≤ 4. Consequently,
every map is colorable using only four colors or less.
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Exercises
Chapter (1)

1. Find |EG|.
(a) K27 (b) K10,32 (c) P56 (d) C77

2. Find ∆(G).
(a) K50 (b) K24,45 (c) P99 (d) C87

3. Find degG.
(a) K18 (b) K22,15 (c) P68 (d) C91

4. A complete graph has 351 edges. Find the number of vertices.

5. G is a complete bipartite graph with degG = 144 and ∆(G) = 9. Find |VG|.

6. If G is d-regular, determine d.
(a) K99 (b) K99,99 (c) P99 (d) C99

7. Draw an example of a 3-regular graph with degree 18.

8. A graph is 5-regular with 35 edges. Find the number of vertices.

9. A complete bipartite graph is regular with 12 vertices. Find the number of edges.

10. Determine the degree sequence.
(a) K5 (b) K2,3 (c) P6 (d) C6

11. A graph has degree sequence (6, 5, 4, 3, 3, 2, 1, 1, 1). Find the number of edges.

12. Determine graphical or not graphical. If graphical, draw the graph.
(a) (3, 2, 2, 1, 1, 1) (b) (4, 3, 3, 2, 1, 0) (c) (5, 3, 2, 2, 1, 1) (d) (5, 4, 4, 3, 3, 3, 3, 2, 2, 1)

13. Draw two different examples of a graph with the given degree sequence.
(a) (4, 4, 3, 2, 2, 1) (b) (2, 2, 2, 2, 2, 1, 1) (c) (5, 3, 2, 2, 1, 1, 1, 1) (d) (3, 3, 3, 3, 3, 3, 3, 3)

14. Determine whether or not G contains a cycle.
(a) K3,2 (b) K1,6 (c) P9 (d) C8

15. Find all values of n such that Cn ⊆ K3,4.

16. Draw an example where G and G are connected and ∆(G) ̸= ∆(G).

17. A graph with 9 vertices is disconnected. What is the maximum number of edges?

18. Determine how many bridges in G.
(a) K11,2 (b) K1,14 (c) P25 (d) C61

19. Draw an example of a connected graph such that every edge is a bridge, and the
complement is also connected but without any bridge.

20. Draw the complement of G.
(a) K5 (b) K3,4 (c) C5 (d) P5
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21. Given the degree sequence of G, determine the degree sequence of G.
(a) (4, 4, 3, 2, 2, 1) (b) (5, 3, 2, 2, 1, 1, 1, 1) (c) (8, 6, 6, 6, 5, 4, 3, 3, 1) (d) P5

22. Given G, find deg(G).
(a) P10 (b) C7 (c) K4,4 (d) K1,9

23. A graph is self-complementary with 17 vertices. Find the number of edges.

24. Draw three different examples of a self-complementary graph.

25. Determine the adjacency matrix.
(a) K5 (b) K3,2 (c) P5 (d) C5

26. Given the adjacency matrix, find deg(G) and deg(G).

(a)

0 1 1
1 0 1
1 1 0

 (b)


0 1 1 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
0 1 1 1 0

 (c)


0 1 0 1 1
1 0 0 0 1
0 0 0 1 1
1 0 1 0 1
1 1 1 1 0

 (d)


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


27. Let A denote the adjacency matrix for C4 and B the adjacency matrix for K2,2.

Find a permutation matrix P such that A = PBP T .

28. Determine the incidence matrix.
(a) K4 (b) K3,2 (c) P5 (d) C5

29. Determine how many rows and columns in the incidence matrix of K20.

30. Given the incidence matrix, determine the adjacency matrix.

(a)

0 1 1
1 0 1
1 1 0

 (b)


1 0
0 1
1 0
0 1

 (c)


1 0 0 0
1 1 1 0
0 1 0 1
0 0 1 1

 (d)


1 0 0 0 0 1 1 0
1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 0
0 1 1 0 0 0 1 1
0 0 0 1 0 1 0 1


Chapter (2)

1. Determine G is a tree or not a tree.
(a) K32,2 (b) K1,66 (c) P95 (d) C42

2. Given G, determine G is cyclic or acyclic.
(a) K2,2 (b) K1,4 (c) P4 (d) C6

3. Draw three different examples of a tree with 6 vertices.

4. Find the degree of a tree with 20 vertices.

5. Find the number of edges of a tree that is self-complementary.

6. Determine whether or not G contains a leaf.
(a) K3,2 (b) K1,6 (c) P9 (d) C8



WON 4 – Graph Theory 23

7. Given the degree sequence, determine G is a tree or not a tree.
(a) (5, 3, 2, 2, 1, 1) (b) (5, 2, 2, 1, 1, 1) (c) (5, 2, 1, 1, 1, 1, 1) (d) (5, 3, 2, 1, 1, 1, 1)

8. A tree has degree 20 and two vertices of degree 5. Find the number of leaves.

9. Given the labeled binary tree, determine the traversal sequence using (i) pre-order
(ii) post-order (iii) in-order algorithm.

(a) A

B C

D E F

G H K

(b) A

C E

F B H

L D

(c) A

L C

F E

DH B
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10. Draw all the spanning trees of the given graph.

1 2

34
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11. Determine the number of spanning trees using a cofactor of D − A.
(a) K4 (b) K2,3 (c) P4 (d) C5

12. Draw the DFS spanning tree starting at vertex (1) and write the DFS sequence.

(a) 5

1 3

8 6

(b) 7 2 4

9 1

8 6 3

(c) 2 5 7

4 8 9

6 1 3

(d)
2
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13. Draw the BFS spanning tree starting at vertex (1) and write the BFS sequence.

(a) 3

5 6

8 1

(b) 7 9 4

2 1

8 6 3

(c) 5 2 7

4 8 9

6 1 3

(d)
6

8

10 4
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14. Given the weight matrix, find the MST sequence and its total weight using (i)
Kruskal’s algorithm (ii) Prim’s algorithm starting at vertex (1).

(a)


0 12 6 10
12 0 4 3
6 4 0 5
10 3 5 0

 (b)


0 9 0 14 12
9 0 8 0 7
0 8 0 6 5
14 0 6 0 4
12 7 5 4 0

 (c)


0 1 0 3 0 5
1 0 3 0 5 0
0 3 0 5 0 7
3 0 5 0 7 0
0 5 0 7 0 9
5 0 7 0 9 0
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15. Draw Prim’s minimal spanning tree starting at (x) and write the MST sequence.
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Chapter (3)
1. Determine the number of triangles in the graph using adjacency matrix.

(a) K4 (b) K2,2 (c) K2,3 (d) K5

2. Determine the number of triangles in K50 without using adjacency matrix.

3. Determine whether or not G contains a triangle.
(a) K1,5 (b) K2,4 (c) K3,3 (d) K5,2

4. Determine the distance matrix.
(a) K5 (b) K3,2 (c) P5 (d) C5

5. Given the adjacency matrix, determine the distance matrix and the diameter.

(a)

0 1 1
1 0 1
1 1 0

 (b)


0 0 1 1 0
0 0 0 0 1
1 0 0 0 1
1 0 0 0 0
0 1 1 0 0

 (c)


0 1 0 1 1
1 0 0 0 0
0 0 0 1 1
1 0 1 0 1
1 0 1 1 0

 (d)


0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


6. Find d(G).

(a) K99 (b) K99,99 (c) P99 (d) C99

7. Find a formula for d(G).
(a) Kn (b) Km,n (c) Pn (d) Cn

8. Find d(C6).

9. Draw an example of a graph with 7 vertices, diameter 4, and no leaf.
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10. Given the weight matrix, determine the distance matrix and the diameter.

(a)


0 12 6 10
12 0 4 3
6 4 0 5
10 3 5 0

 (b)


0 12 0 14 3
12 0 8 0 4
0 8 0 9 5
14 0 9 0 7
3 4 5 7 0

 (c)


0 1 3 1 3 1
1 0 1 3 1 3
3 1 0 1 3 1
1 3 1 0 1 3
3 1 3 1 0 1
1 3 1 3 1 0


11. Given the weighted graph, determine the diameter.
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12. Determine Row (1) and Row (5) of the distance matrix using Dijkstra’s algorithm,
and write the spanning tree sequence for each case.

(a) v7 v6 v2
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13. Find an Euler walk or Euler circuit in the graph, if exists.
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14. Determine whether or not G has an Euler walk/circuit.
(a) K4,4 (b) K5,4 (c) K9,9 (d) K9,2

15. Given G, determine whether or not G has an Euler walk/circuit.
(a) P11 (b) P14 (c) C12 (d) C13

16. Solve the Chinese Postman problem.
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17. Determine G is Hamilton or not Hamilton.
(a) K99 (b) K99,1 (c) K99,2 (d) K99,99

18. Determine if C6 is Hamilton or not Hamilton.

19. Determine how many Hamilton cycles exist and draw them.

(a) ◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦
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20. Solve the Traveling Salesman problem by drawing all possible Hamilton cycles.
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Chapter (4)
1. Determine G is bipartite or not bipartite.

(a) C39 (b) C48 (c) P27 (d) P56

2. Determine C6 is bipartite or not bipartite.

3. If G is bipartite, draw it as a subset of Km,n. If not bipartite, find an odd cycle.
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4. Find a complete matching or prove not exist.

(a) 1 2 3 4 5
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5. Determine χ(G).
(a) P99 (b) C99 (c) P100 (d) C100

6. Find a formula for χ(G).
(a) Kn (b) Km,n (c) Pn (d) Cn

7. Find the chromatic number for each graph.
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8. Find the chromatic number of C6.

9. Which one applies? (A) χ(G) = ∆(G) + 1 (B) χ(G) = ∆(G) (C) χ(G) < ∆(G)
(a) Kn (b) Km,n (c) Pn (d) Cn

10. Color the graph using Sequential Coloring algorithm and write the color sequence.
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11. Repeat Problem (10) using Welsh-Powell algorithm.

12. Prove planar or not planar using Hamilton cycle. If planar, draw the plane graph.
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13. Determine C6 is planar or not planar.

14. A planar graph has 10 vertices and degree 32. Find the number of regions.

15. Draw an example of a plane graph with 8 vertices and 8 regions.

16. A bipartite planar graph has degree 42. What is the maximum number of regions?
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17. Use Euler’s planarity test to prove G is not planar, if it applies.
(a) P8 (b) C6 (c) P7 (d) C7

18. Draw the dual graph of K2,9.

19. Given the dual graph, find an example of the map.
(a) K4 (b) P5 (c) K2,3 (d) C5

20. Find the chromatic number of the map by coloring its dual graph.

(a) (b) (c) (d)
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Extra Problems
1. Prove that in every graph there exist two vertices of equal degree.

2. Describe the complement of Km,n in general.

3. Prove that Cn is connected for all n ≥ 5.

4. Find all examples of a connected graph G with 5 vertices such that G is also con-
nected, with ∆(G) ̸= ∆(G).

5. Prove that if G is self-complementary, then |EG| = 1
4
n(n− 1), where n = |VG|.

6. Let VG = {v1, v2, . . . , vn} with adjacency matrix A. Prove that [A2]ii = deg(vi).

7. Prove that adding an edge to a tree will produce a cycle.

8. Prove that if |EG| ≥ |VG|, then the graph G is cyclic.

9. Prove that Km,n is a tree if and only if it has a leaf.

10. Prove that K1,n is the only tree with disconnected complement.

11. Prove that P4 is the only self-complementary tree.

12. Let G be a tree with |VG| ≥ 3 and n leaves. Prove that Kn ⊆ G.

13. Given a degree sequence (d1, d2, . . . , dn) with dn ̸= 0 and d1 + · · · + dn = 2n − 2,
prove there exists a tree with this degree sequence.

14. Determine the number of spanning trees for Pn and Cn in general.

15. Prove that there are nn−2 different labeled trees with vertices v1, v2, . . . , vn, where
n ≥ 2, by showing that nn−2 is the number of spanning trees of a labeled Kn.

16. Prove that if G is self-complementary, then d(G) = 2 or 3.

17. Can two non-isomorphic graphs have the same distance matrix?
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18. Prove that d(Cn) = 2 for all n ≥ 5.

19. Prove that Pn is the only tree that has an Euler walk.

20. Determine all the values of n for which Cn has an Euler walk.

21. Let p be a prime number. Prove that Cp is the only connected regular graph with
p edges.

22. Prove that Cn is a Hamilton graph for all n ≥ 5.

23. Consider the weighted graph given by the weight matrix in Problem (3.10b). Find
the minimum total weight of a closed walk through all the vertices in the graph.
(Hint: the minimum closed walk here is not given by a Hamilton cycle.)

24. Let G be a bipartite graph with n vertices. Prove that |EG| ≤ 1
4
n2 and in particular,

|EG| = 1
4
n2 if and only if G ≃ Kn

2
,n
2
.

25. Prove that Cn is not bipartite for all n ≥ 5.

26. Let G be a bipartite graph with VG = X ⊔ Y . Prove that if G is a Hamilton graph,
then |X| = |Y |.

27. Let G be a connected graph. Prove that G is a 2-regular bipartite graph if and only
if G is a cycle of even length.

28. Let G be connected with three or more leaves. Prove that G is not bipartite.

29. Prove that Km,n has a complete matching if and only if it is a Hamilton graph.

30. Prove that χ(G) = 2 if G is a non-trivial tree.

31. Prove that χ(Cn) ≥ k for all n ≥ 2k.

32. Find an example of a graph with chromatic number 4 that does not contain K4.

33. Consider the graph as pictured in Problem (3.11a). Find a particular vertex ordering
for the Sequential Coloring algorithm that will result in 4 colors.

34. Prove that Cn is not planar for all n ≥ 7.

35. Prove that a d-regular graph is not planar for all d ≥ 6.

36. Prove that if G is a planar graph with at least 11 vertices, then G is not planar.

37. Show that in general K2,n is planar by drawing the plane graph, then determine its
dual graph.

38. Prove that every graph G is homeomorphic to a bipartite graph, if we replace every
edge in G by a path of length two.

39. The Peterson graph is given in the Example following Theorem 37. Determine (a)
the degree sequence (b) the degree (c) regular or irregular (d) the diameter (e) Euler
or not Euler (f) bipartite or not bipartite (g) the chromatic number (h) all its Cn

subgraphs.

40. The Peterson graph is neither planar nor Hamilton. Determine whether or not its
complement is planar or is Hamilton.


