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NUMBER THEORY

Amin Witno

These notes have been prepared for students of Math 313 at Philadelphia University,
Jordan.1 Outline notes are not meant for self-study; No student is expected to fully
benefit from these notes unless they have regularly attended the lectures.

1 Divisibility
Definition. Let d,m ∈ Z. If m

d
∈ Z, then we say that d divides m, and that m is

divisible by d. We write d | m when d divides m, or d ∤ m otherwise.

Example. We have 3 | 15 and 10 | 20, whereas 3 ∤ 22 and 5 ∤ 21.

Theorem 1.1 (Properties of Divisibility).

1. If d | m ̸= 0, then |d| ≤ |m|.

2. If d | m and m | d, then d = ±m.

3. If d | m and m | n, then d | n.

4. If d | m and d | n, then d | am+ bn for all a, b ∈ Z.

Proof. In class. ▽

Definition. For all x ∈ R, the floor of x is defined to be the greatest integer n ≤ x.

Example. We have ⌊3.14⌋ = 3 and ⌊20/3⌋ = 6. Also ⌊2⌋ = 2 and ⌊−3.14⌋ = −4.

Problem 1. Evaluate the floor function.
(a) ⌊3.999⌋ (b) ⌊

√
450⌋ (c) ⌊234/9⌋ (d) ⌊−99/7⌋

Definition. With m ∈ Z and n ∈ N, we define m mod n as

m%n = m−
⌊m
n

⌋
× n

Note that m%n is just the remainder upon dividing m by n using the long division
algorithm taught in grade school.

1Copyrighted under a Creative Commons License ©2005–2023 Amin Witno
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Example. We have 20%3 = 2 and 100%13 = 9. Also 7%11 = 7 and 24%8 = 0.

Problem 2. Evaluate the mod operation.
(a) 123456789%10 (b) 100%7 (c) −111%22 (d) 12345%15

Theorem 1.2 (Properties of Mod).

1. m%n = 0 if and only if n | m

2. 0 ≤ m%n < n, i.e., m%n ∈ {0, 1, . . . , n− 1}

3. m = nq + r with r ∈ {0, 1, . . . , n− 1} if and only if r = m%n and q = ⌊m/n⌋

Proof. In class. ▽

Definition. According to Theorem 1.2, for all m ∈ Z, either m%2 = 0 or m%2 = 1.
We call such numbers even or odd, respectively. Thus m is even if m = 2k, and odd if
m = 2k + 1, for some k ∈ Z.

Problem 3. Prove that (a) 8 | n2 − 1 if n is odd (b) 4 ∤ n2 + 2 for all n even and odd.

Theorem 1.3. One in every k consecutive integers is divisible by k.

Proof. Let the consecutive integers n, n+1, . . . , n+ k− 1, and let n% k = d. If d = 0,
we are done; otherwise 1 ≤ d ≤ k − 1. Since n− d = ⌊n/k⌋k, we have k | n− d so by
Theorem 1.1, k | n+k−d. This last number is one of the consecutive integers because
1 ≤ k − d ≤ k − 1. ▽

Example. Prove that 2 | n2 − n and 3 | n3 − n for all n ∈ Z.
Solution. We have n2 −n = (n− 1)n, of two consecutive integers, hence divisible by 2.
Similarly, n3−n = (n− 1)n(n+1) has three consecutive integers, hence divisible by 3.

Problem 4. Prove that (a) 4 | n4 − n2 and (b) 5 | n5 − n for all n ∈ Z.

Definition. When d | m, we say that d is a divisor of m, and that m is a multiple of
d. In a most usual context, the term divisor is understood positive divisor.

Example. The number 11 is a divisor of 77, and 45 is a multiple of 5 and of 9.

Definition. With m,n ∈ Z, not both zeros, we define gcd(m,n) to be the greatest
common divisor of m and n, i.e., the largest integer d such that d | m and d | n.

Example. We have gcd(24, 56) = 8 because 8 | 24 and 8 | 56, and because there is no
other divisor of 24 and 56 that is larger than 8.

Theorem 1.4. If n ∈ N, then gcd(m,n) = gcd(n,m%n).

Proof. Let M = m%n = m− ⌊m
n
⌋n, and set

L = {d ∈ Z : d | m and d | n}
R = {d ∈ Z : d | n and d | M}

To prove the theorem, we will show that L = R. Suppose d ∈ L. Since d | m and
d | n, by Theorem 1.1 we have d | am + bn = M, where a = 1 and b = −⌊m

n
⌋. Hence

d ∈ R. Conversely, suppose d ∈ R. Since d | n and d | M , then d | an + bM = m,
where a = ⌊m

n
⌋ and b = 1. Hence d ∈ L, and so L = R. ▽
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Example (The Euclidean Algorithm). Let m = 201 and n = 72. Repeated application
of Theorem 1.4 generates the identities

gcd(201, 72) = gcd(72, 57) = gcd(57, 15) = gcd(15, 12) = gcd(12, 3) = gcd(3, 0) = 3

Note the sequence of remainders: (201, 72, 57, 15, 12, 3, 0), which is obtained succes-
sively via the mod operation:

201− (2)× 72 = 57

72− (1)× 57 = 15

57− (3)× 15 = 12

15− (1)× 12 = 3

12− (4)× 3 = 0

According to Theorem 1.2, this sequence is strictly decreasing, so it will end with
remainder zero. The final gcd will be of the form gcd(d, 0) = d, and d = gcd(m,n).

Problem 5. Evaluate gcd(m,n).
(a) gcd(549, 81) (b) gcd(1234, 5678) (c) gcd(234, 60970) (d) gcd(12345, 54321)

Theorem 1.5 (GCD is Linear Combination). There exist a, b ∈ Z such that

gcd(m,n) = am+ bn

Proof. We observe that if M = a1m+ b1n and N = a2m+ b2n, then

aM + bN = (aa1 + ba2)m+ (ab1 + bb2)N

i.e., a linear combination of two linear combinations of m and n is again a linear
combination of m and n. Now the resulting sequence {ak | k ≥ 0} upon applying the
euclidean algorithm obeys the recurrence ak = ak−2 % ak−1 for all k ≥ 2. This says
that ak is a linear combination of ak−2 and ak−1. And since a0 = m = 1m + 0n and
a1 = n = 0m + 1n, we see that every term in {ak}, and gcd(m,n) in particular, is a
linear combination of m and n. ▽

Example (The Extended Euclidean Algorithm). We repeat the euclidean algorithm
for computing gcd(201, 72), this time expressing each remainder as a linear combination
of the form d = (a) 201 + (b) 72.

d a b
201 1 0

– (2) 72 0 1
– (1) 57 1 –2
– (3) 15 –1 3
– (1) 12 4 –11
– (4) 3 –5 14

0

The row above d = 0 easily checks that gcd(201, 72) = 3 = (−5) 201 + (14) 72.

Problem 6. Find integers a and b such that gcd(m,n) = am+ bn.
(a) gcd(27, 25) (b) gcd(549, 81) (c) gcd(345, 215) (d) gcd(843, 2890)
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Example. If d | m and d | n, then d | gcd(m,n) according to Theorems 1.5 and 1.1.

Theorem 1.6. Suppose that gcd(c, d) = 1. If c | m and d | m, then cd | m.

Proof. By Theorem 1.5, there are a, b ∈ Z such that 1 = ac+bd. Multiply this equality
by m/cd and we get m/cd = a(m/d)+ b(m/c), which is an integer if m/c,m/d ∈ Z. ▽

Example. Prove that 6 | n3 − n for all n ∈ Z.
Solution. We are not getting six consecutive out of n3 − n. However, 6 = 2 × 3 with
gcd(2, 3) = 1, so by the theorem it suffices to prove that 2 | n3−n and 3 | n3−n. Both
are a consequence of the fact that we have a product of three consecutive integers.

Problem 7. Prove that if n is odd, then 24 | n3 − n.

Problem 8. Prove that (a) 30 | n5 − n and (b) 120 | (n3 − n)(n2 − 4) for all n ∈ Z.

Theorem 1.7. There exist a, b ∈ Z with am+ bn = 1 if and only if gcd(m,n) = 1.

Proof. If gcd(m,n) = 1, then 1 = am + bn for some a, b ∈ Z by Theorem 1.5. Con-
versely, let a, b ∈ Z such that am + bn = 1. If d = gcd(m,n), then by definition d | m
and d | n, hence d | am+ bn by Theorem 1.1. Thus d | 1, and so d = 1. ▽

Problem 9. Prove each statement.
(a) If gcd(m,n) = d, then gcd(m/d, n/d) = 1.
(b) If gcd(m,n) = am+ bn, then gcd(a, b) = 1.
(c) If gcd(a,m) = 1 and gcd(a, n) = 1, then gcd(a,mn) = 1.

Theorem 1.8 (Euclid’s Lemma). Let gcd(d,m) = 1. If d | mn, then d | n.

Proof. Let d | mn and gcd(d,m) = 1. By Theorem 1.5, 1 = ad+ bm for some a, b ∈ Z.
It follows that n/d = an+ b(mn/d) ∈ Z and d | n. ▽

Theorem 1.9. Let d = gcd(m,n). Then the linear equation mx + ny = c has a
solution if and only if d | c, in which case all its solutions are given by x = x0 + kn/d
and y = y0 − km/d, for any particular solution (x0, y0) and for any k ∈ Z.

Proof. From Calculus, the solutions of the linear equation form the straight line passing
through (x0, y0) with a slope of −m/n. Every point on this line is given by (x0+ t, y0−
tm/n), with t ∈ R. We have integer solution if and only if t ∈ Z and n | tm. Note first
that if d = 1, then Euclid’s lemma demands that n | t, i.e., t = kn for any k ∈ Z, giving
the general solution x = x0 + kn and y = y0 − km. For d ≥ 1 in general, we replace
our equation by (m/d)x + (n/d)y = c/d without altering its solution set. But then
gcd(m/d, n/d) = 1 (Problem 9), and therefore the general solution is x = x0 + kn/d
and y = y0 − km/d. ▽

Example. Find all solutions x, y ∈ Z such that 201x+ 72y = 21.
Solution. We return to the extended euclidean algorithm where we get gcd(201, 72) =
3 = (−5) 201 + (14) 72. Since 3 | 21, solution exists. In fact, multiplying this equation
by 7 gives 21 = (−35) 201 + (98) 72, i.e., x0 = −35 and y0 = 98. The general solution
is therefore x = −35 + 24k and y = 98− 67k.

Problem 10. Solve the linear equation, if a solution exists.
(a) 34x+ 55y = 1 (b) 24x+ 18y = 44 (c) 25x+ 85y = −35 (d) 48x− 28y = 32
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2 Primes
Definition. To factor a number n ∈ N means to express n as the product of two or
more smaller numbers, e.g., n = a× b with 1 < a, b < n. In such context, a and b are
called factors of n. Thus a factor of n is a divisor d in the range 1 < d < n. The term
factorization refers to a particular factoring output.

For n ≥ 2, we call n a prime if a factorization is not possible, and composite if it is.

Example. From 2 to 313, the primes are listed below and the composites are not.

2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97 101

103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239
241 251 257 263 269 271 277 281 283 293 307 311 313

Problem 11. Prove that every prime number p > 2 is odd.

Problem 12. Prove that every prime number p > 3 is of the form p = 6k ± 1, k ∈ N.

Theorem 2.1. Every composite n can be factored into a product of prime numbers,
one of which is p ≤

√
n.

Proof. In class. ▽

Example (Trial Division Algorithm). We illustrate how to determine primality for a
small number, say n = 317. According to Theorem 2.1, if 317 is composite, then it has
a prime factor p ≤

√
317 ≈ 17.80, i.e., p ∈ {2, 3, 5, 7, 11, 13, 17}. We try all and find

that p ∤ 317 in this range. Hence, we know that 317 is prime. Of course, if p | n during
the trial, then not only we know that n is composite but also have a factorization.

Problem 13. Determine prime or composite using trial division.
(a) 323 (b) 799 (c) 811 (d) 1333

Example (Fermat Factorization Algorithm). Sometimes a composite n may have no
small factors, e.g., when its factors are in the proximity of

√
n. We illustrate how to

factor n = 4183 by trying to find x, y ∈ Z such that x2 − n = y2, which will then give
n = (x+ y)(x− y). Since

√
4183 ≈ 64.67, we start with x = 65, 66, . . . until y is found:

652 − 4183 = 42

662 − 4183 = 173

672 − 4183 = 306

682 − 4183 = 441 = 212

We conclude with 4183 = 682 − 212 = (68 + 21)(68− 21) = 89× 47.

Problem 14. Factor n using Fermat factorization.
(a) 2117 (b) 16781 (c) 17933 (d) 70027

Theorem 2.2. For every n ∈ Z, if p is a prime number, then

gcd(p, n) =

{
p if p | n
1 if p ∤ n
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Proof. This is obvious since the only divisors of p are 1 and p. ▽

Problem 15. Evaluate gcd(m, p) given that p is a prime number.
(a) gcd(6792, 19) (b) gcd(75536, 239) (c) gcd(584641, 89) (d) gcd(19392, 101)

Theorem 2.3. Let p be a prime. If p | mn, then either p | m or p | n.

Proof. If p ∤ n, then gcd(p, n) = 1 and so if p | mn, then p | m by Euclid’s lemma. ▽

Problem 16. Prove that if a prime p | n2, then p2 | n2.

Theorem 2.4 (The Fundamental Theorem of Arithmetic). Every composite is the
product of a unique collection of prime numbers, counting multiplicity.

Proof. By contradiction, suppose that a composite has factored into two distinct multi-
sets of primes. After canceling common factors, we would have

∏
pj =

∏
qk with primes

pj and qk not having a common value. Theorem 2.3 implies that each pj divides one
qk, and it is absurd to have a prime dividing another prime. ▽

Example. Let n = 7920. The prime factorization n = 24 × 32 × 5 × 11 is unique.
Moreover, if d | n, by the uniqueness of the prime factorization of d plus Theorem 2.3,
we must have d = 2e2 × 3e3 × 5e5 × 11e11 , where e2 ∈ {0, 1, 2, 3, 4}, e3 ∈ {0, 1, 2}, e5 ∈
{0, 1}, e11 ∈ {0, 1}. There is a total of 5× 3× 2× 2 = 60 divisors of n.

Problem 17. Determine the number of divisors of n.
(a) 720 (b) 1024 (c) 2310 (d) 19392

Example. Suppose that m and n have been factored into primes, e.g.,

m = 27 × 32 × 7× 113

n = 23 × 35 × 54 × 76

If d | m and d | n, then d must factor into primes that are common to those of m and
n, i.e., d = 2e2 × 3e3 × 7e7 , where e2 ∈ {0, 1, 2, 3}, e3 ∈ {0, 1, 2}, e7 ∈ {0, 1}. The largest
such d is therefore gcd(m,n) = 23 × 32 × 7 = 504.

Problem 18. Evaluate gcd(m,n) using prime factorization.
(a) gcd(40, 72) (b) gcd(1210, 1024) (c) gcd(19845000, 893025) (d) gcd(19392, 29391)

Theorem 2.5. There are infinitely many prime numbers.

Proof. Given a set S of primes, let n = 1 +
∏

p∈S p. Since n > p for all p ∈ S, either
n is a new prime or else n has a prime factor q | n. If q ∈ S, then q |

∏
p∈S p and then

q | n−
∏

p∈S p = 1, which is impossible as q is prime. Hence q ̸∈ S, and the claim holds
since |S| is arbitrary. ▽

Definition. For x ∈ R, let π(x) count the number of primes p ≤ x.

Example. We have π(11) = 5 and π(313) = 65. Also π(π) = 2.

Theorem 2.6 (The Prime Number Theorem). If log x denotes the natural logarithm
function, then

lim
x→∞

π(x)

x/ log x
= 1

This means that if x is sufficiently large, then we may use x/ log x to estimate the value
of π(x) with a small relative error.
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Proof. Not here. ▽

Example. The number of primes below one million has been determined to be π(106) =
78498. For comparison, our scientific calculator reveals that 106/ log(106) ≈ 72382.41.

Problem 19. Estimate the number of primes that have exactly nine decimal digits.

Theorem 2.7 (Dirichlet’s Theorem). For a fixed pair a, n ∈ N, there exist infinitely
many primes p with remainder p%n = a if and only if gcd(a, n) = 1.

Proof. Not here. ▽

3 Congruences
Definition. If a, b ∈ Z such that a%n = b%n, then we say a and b are congruent to
each other modulo n. We write a ≡ b (modn) if this is so, or a ̸≡ b (mod n) otherwise.

Example. We have 27 ≡ 42 (mod 5) and 13 ̸≡ 8 (mod 3). Also, we have a ≡ b (mod 2)
if and only if both a and b are even or both odd.

Theorem 3.1 (Congruence to Divisibility/Equality).

1. a ≡ b (modn) if and only if n | (a− b)

2. a ≡ b (modn) if and only if a = b+ nk for some k ∈ Z

Proof. In class. ▽

Problem 20. Prove that if a is odd, then a2 ≡ 1 (mod 8).

Problem 21. Prove that if a ≡ b (modn), then gcd(a, n) = gcd(b, n).

Theorem 3.2. If a ≡ b (modn) and c ≡ d (modn), then a + c ≡ b + d (modn) and
ac ≡ bd (modn). Consequently, f(a) ≡ f(b) (modn) for any polynomial f(x) with
integer coefficients.

Proof. In class. ▽

Problem 22. Prove that if a ≡ b (modm) and a ≡ b (modn), then a ≡ b (modmn),
under the condition that gcd(m,n) = 1.

Theorem 3.3. If gcd(m,n) = 1 and ma ≡ mb (modn), then a ≡ b (modn).

Proof. Since ma ≡ mb (modn) means n | ma−mb = m(a− b), then if gcd(m,n) = 1,
Euclid’s lemma implies n | (a− b), that is a ≡ b (modn). ▽

Definition. For each m ∈ {0, 1, . . . , n − 1}, define the residue class of m modulo n
to be the set [m]n = {x ∈ Z | x%n = m}. Thus a, b ∈ Z belong in the same class if
and only if a ≡ b (modn), and therefore a residue class is also called congruence class.
Furthermore, we may write

[m]n = {x ∈ Z | x ≡ m (modn)} = {nk +m | k ∈ Z}

Observe that the n classes [0]n, [1]n, . . . , [n − 1]n form a partition on Z, so we hereby
extend this definition for all m ∈ Z by letting [m]n = [m%n]n.
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Example. We have [0]2 = {2k | k ∈ Z} and [1]2 = {1 + 2k | k ∈ Z}, which partition
the integers into even and odd numbers. Also [17]3 = [2]3 = {. . . , 2, 5, 8, 11, 14, 17, . . .}.

Problem 23. Prove that if a prime p ∈ [1]3, then p ∈ [1]6.

Theorem 3.4. Let d = gcd(m,n). Then the linear congruence mx ≡ c (modn) has a
solution if and only if d | c, in which case all its solutions are given by x ∈ [x0]n/d for
any particular solution x0 ∈ Z.

Proof. We have mx0 ≡ c (modn) if and only if there exists y0 ∈ Z such that mx0 +
ny0 = c. Theorem 1.9 gives the general solution x = x0 + kn/d, i.e., x ∈ [x0]n/d. ▽

Example. Find all x ∈ Z satisfying 24x ≡ 54 (mod 126)
Solution. We resort to the extended euclidean algorithm and arrive at gcd(24, 126) =
6 = 24 (−5) + 42 (1). Since 6 | 54, we may multiply the linear combination by the
integer 9 to get 54 = 24 (−45) + 42 (9). By Theorem 1.9, the general solution is
x = −45 + 21k, which is equivalent to x ∈ [18]21.

Problem 24. Solve the linear congruence, if a solution exists.
(a) 8x ≡ 5 (mod 13) (b) 35x ≡ 7 (mod 49) (c) 6x ≡ 9 (mod 1023)
(d) 19392x ≡ 6666 (mod 29391)

Definition. When ab ≡ 1 (modn), we call the numbers a and b inverses of each other
modulo n. Observe that an inverse of a is also an inverse of every x ∈ [a]n.

Example. The number 3 is an inverse of 5 modulo 7 because 3× 5 ≡ 1 (mod 7). Also,
5 is its own inverse (i.e., self-inverse) modulo 8.

Theorem 3.5. The number a has an inverse modulo n if and only if gcd(a, n) = 1, in
which case all its inverses belong to a unique residue class modulo n.

Proof. This follows from Theorem 3.4 by letting m = a and c = 1. ▽

Definition. If ab ≡ 1 (modn), we denote the inverse class of a modulo n by [a−1]n =
[b]n and the inverse of a mod n by a−1 %n = b%n. Sometimes we also write a−1 mod
n when refering to an element in this inverse class.

Example. Evaluate 13−1 %100.
Solution. The problem is equivalent to solving the linear congruence 13x ≡ 1 (mod 100)
and the linear equation 13x+100y = 1. Our algorithm returns 1 = 13 (−23)+100 (3),
thus the inverse class [−23]100. Hence, 13−1 %100 = −23%100 = 77.

Problem 25. Evaluate the inverse mod, if exists.
(a) 64−1 %81 (b) 28−1 %89 (c) 27−1 %209 (d) 101−1 %256

Theorem 3.6 (The Chinese Remainder Theorem). If gcd(m,n) = 1, then

a ≡ b (modmn) if and only if
{

a ≡ b (modm)
a ≡ b (modn)

Proof. This is the statement of Theorem 1.6 translated into congruence notation. ▽

Definition. When gcd(m,n) = 1, we say that m and n are relatively prime to each
other. Three or more integers are pairwise relatively prime if they are relatively prime
one to another.
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Example. The numbers 8, 11, and 15 are pairwise relatively prime because gcd(8, 11),
gcd(8, 15), and gcd(11, 15) all equal one.

Theorem 3.7. Suppose that n1, n2, . . . , nk ∈ N are pairwise relatively prime. Then
the system of congruences x ≡ ci (modni) has all its integer solutions x ∈ [x0]N , with

N =
k∏

i=1

ni and x0 =
k∑

i=1

ci

(
N

ni

)(
N

ni

)−1

where each inverse represents any integer in the corresponding inverse class modulo ni.

Proof. By design, we have ci(N/ni)(N/ni)
−1 ≡ ci (mod ni) and ci(N/ni)(N/ni)

−1 ≡ 0
(mod nj) if j ̸= i. This assures that x0 is a solution. The Chinese remainder theorem
then guarantees the uniqueness of the solution class modulo N . ▽

Example. Find all x ∈ Z satisfying both x ≡ 5 (mod 7) and x ≡ 2 (mod 9).
Solution. We have N = 7 × 9 = 63 and x0 = 5(9)(9−1) + 2(7)(7−1). Inverse mod
computation gives 9−1 ≡ −3 (mod 7) and 7−1 ≡ 4 (mod 9). The particular solution
x0 = 5(9)(−3) + 2(7)(4) = −79 yields the general solution x ∈ [−79]63 = [47]63.

Problem 26. Solve the system of linear congruences.
(a) x ≡ 5 (mod 16) and x ≡ 1 (mod 25)
(b) x ≡ 2 (mod 9), x ≡ 13 (mod 10), x ≡ 5 (mod 11)
(c) x ≡ 6 (mod 7), x ≡ 10 (mod 11), x ≡ 12 (mod 13)
(d) x ≡ 4 (mod 5), x ≡ 1 (mod 4), x ≡ 2 (mod 3), x ≡ 3 (mod 7)

Theorem 3.8. Let p be a prime number. If a2 ≡ 1 (mod p), then a ≡ ±1 (mod p).

Proof. If p | a2−1 = (a−1)(a+1), then by Theorem 2.3 we must have either p | a−1,
i.e., a ≡ 1 (mod p), or p | a+ 1, i.e., a ≡ −1 (mod p). ▽

Problem 27. Prove that if a2 ≡ b2 (mod p), then a ≡ ±b (mod p), where p is prime.

Theorem 3.9 (Wilson’s Theorem). If p is a prime number, then (p− 2) !% p = 1.

Proof. Let S = {1, 2, . . . , p − 1}. Theorem 3.5 implies that for each a ∈ S, there is a
unique a−1 % p ∈ S. Theorem 3.8 states that a−1 % p = a if and only if a ∈ {1, p− 1}.
Hence the subset {2, 3, . . . , p−2} consists of pairs of inverses modulo p, whose product
satisfies the congruence (p− 2) ! ≡ 1 (mod p). ▽

Example. With p = 67, Wilson’s theorem states that 65 !% 67 = 1. Also, since 65 ! ≡
1 implies 64 ! ≡ 65−1 (mod 67), we are able to get 64 !% 67 = 33. Hence, the theorem
reduces the computational challenge involving large factorial mod a neighboring prime.

Problem 28. Use Wilson’s theorem to help compute the mod operation.
(a) 100 !% 101 (b) 97 !% 101 (c) 310 !% 313 (d) 48 !% 53

Problem 29. Prove that a number n ≥ 2 is prime if and only if (n−1) ! ≡ −1 (modn).
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4 Exponentiation
Example (Successive Squaring Algorithm). Evaluate 347 %100.
Solution. First we express the exponent 47 as the sum of powers of two:

47 = 32 + 8 + 4 + 2 + 1 → 347 = 332 × 38 × 34 × 32 × 31

Next we compute these powers mod 100 by successively squaring the previous power:

32 %100 = 9

34 %100 = 92 %100 = 81

38 %100 = 812 %100 = 61

316 %100 = 612 %100 = 21

332 %100 = 212 %100 = 41

Finally, 347 %100 = (41× 61× 81× 9× 3)%100 = 5469687%100 = 87.

Problem 30. Use successive squaring algorithm to compute the power mod operation.
(a) 233 %11 (b) 2399 %20 (c) 359 %79. (d) 47250 %100

Definition. By a complete residue system modulo n, we mean a set of n integers from
distinct residue classes modulo n.

Example. A complete residue system modulo 3 can be {0, 1, 2}, {1, 5, 9}, {−1,−2,−3},
or {11, 24, 43}. In general, {0, 1, . . . , n− 1} is a complete residue system modulo n.

Theorem 4.1. Let a ∈ Z with gcd(a, n) = 1. Then S is a complete residue system
modulo n if and only if {ax | x ∈ S} is also a complete residue system modulo n.

Proof. We must show that x ̸≡ y (mod n) if and only if ax ̸≡ ay (mod n) for all
x, y ∈ S. Under the gcd condition, this follows right from Theorem 3.3. ▽

Example. Let n = 5 with S = {0, 1, 2, 3, 4}. Choose a = 7, where gcd(7, 5) = 1. Then
7S = {0, 7, 14, 21, 28}, whose remainders mod 5 correspond to {0, 2, 4, 1, 3} = S.

Theorem 4.2 (Fermat’s Little Theorem). Let p be a prime number and a ∈ Z. Then
ap ≡ a (mod p). Equivalently, if p ∤ a, then ap−1 % p = 1.

Proof. Suppose that p ∤ a. Then S = {0, 1, . . . , p−1} and T = {ax | x ∈ S} are both a
complete residue system modulo p. In particular, the non-zero elements in T represent
the classes of 1, 2, . . . , p− 1. Hence,

a× 2a× · · · × (p− 1)a ≡ 1× 2× · · · × (p− 1) (mod p)

Theorem 3.3 allows us to cancel out all the common factors, so ap−1 ≡ 1 (mod p), which
is equivalent to ap−1 % p = 1 and ap ≡ a (mod p). The latter congruence remains valid
when p | a as both sides belong to the zero class. ▽

Example. Prove that 35 | n13 − n for all n ∈ Z.
Solution. By the Chinese remainder theorem, it suffices to show that 5 | n13 − n and
7 | n13 − n. To avoid triviality, we assume 5 ∤ n and 7 ∤ n. By Fermat’s little theorem,
n4 ≡ 1 (mod 5), which implies n12 ≡ 13 (mod 5) and n13 ≡ n (mod 5). In a similar way,
n6 ≡ 1 (mod 7), which implies n12 ≡ 12 (mod 5) and n13 ≡ n (mod 5).
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Problem 31. Prove that 77 | n31 − n for all n ∈ Z.

Definition. Let S = {0, 1, . . . , n − 1}. The Euler’s phi function ϕ(n) counts the
number of elements in S which are relatively prime to n. Observe that this definition
of ϕ(n) is unaffected if S is replaced by another complete residue system modulo n.

Example. We have ϕ(10) = 4 and ϕ(11) = 10.

Theorem 4.3. If p is a prime, then ϕ(pk) = pk − pk−1 for all k ∈ N. In particular,
ϕ(p) = p− 1.

Proof. Let n = pk and S = {0, 1, . . . , n−1}. By definition, ϕ(n) = n minus the number
of elements d ∈ S with gcd(d, n) > 1. Since n has only one prime factor, gcd(d, n) > 1
if and only if p | d, and the number of multiples of p in S is exactly n/p = pk−1. ▽

Example. We have ϕ(313) = 313− 1 = 312 and ϕ(32) = 25 − 24 = 16.

Problem 32. Evaluate the Euler’s phi function.
(a) ϕ(81) (b) ϕ(101) (c) ϕ(625) (d) ϕ(1024)

Problem 33. Prove that ϕ(n) = n− 1 if and only if n is prime.

Theorem 4.4. If gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Let M,N , and MN be the subsets of complete residue systems modulo m,n,
and mn, respectively, containing the elements relatively prime to each modulus. The
theorem claims that |MN | = |M × N |. If x ∈ MN , then x is relatively prime to
mn, hence to m and n as well. Hence, there exists a unique pair (c, d) ∈ M × N
such that x ≡ c (modm) and x ≡ d (modn). Conversely, by Theorem 3.7, a pair
of such congruences corresponds to a unique element x ∈ MN . Thus the pairing
x ⇐⇒ (c, d) is a one-to-one correspondence between the two sets, which proves that
|MN | = |M ×N |. ▽

Example. The last two theorems suffice for us to evaluate ϕ(n) for any n ∈ N, e.g.,

792 = 23 × 32 × 11 → ϕ(792) = ϕ(23)× ϕ(32)× ϕ(11)

and the result, ϕ(792) = (23 − 22)× (32 − 3)× (11− 1) = 4× 6× 10 = 240.

Problem 34. Evaluate the Euler’s phi function.
(a) ϕ(360) (b) ϕ(ϕ(81)) (c) ϕ(4800) (d) ϕ(19392)

Problem 35. Prove each statement.
(a) If n ≥ 3, then ϕ(n) is even.
(b) If n is odd, then ϕ(2n) = ϕ(n).
(c) If n is even, then ϕ(2n) = 2ϕ(n).

Problem 36. Prove that for all n ∈ N, we have the formula

ϕ(n) = n
∏
p|n

(
1− 1

p

)
where the product ranges over all the prime divisors of n, represented by p. Then use
this to derive the identity ϕ(nk) = nk−1ϕ(n) for all k ∈ N.
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Definition. By a reduced residue system modulo n, we mean a set of ϕ(n) integers
from distinct residue classes [a]n for which gcd(a, n) = 1.

Example. We can have {1, 2, 3, 4} or {±1,±2} for n = 5, or {1, 2, 4, 5, 7, 8} if n = 9.
Also, in general {1, 2, . . . , p− 1} is a reduced residue system modulo a prime p.

Theorem 4.5. Let a ∈ Z with gcd(a, n) = 1. Then S is a reduced residue system
modulo n if and only if {ax | x ∈ S} is also a reduced residue system modulo n.

Proof. In view of Theorem 4.1 and its proof, it suffices to show that gcd(x, n) = 1 if
and only if gcd(ax, n) = 1, for all x ∈ S. But this is a consequence of the uniqueness
of prime factorization, where gcd(a, n) = 1 implies gcd(ax, n) = gcd(x, n). ▽

Example. Let n = 9 and S = {1, 2, 4, 5, 7, 8}. Choose a = 7, where gcd(7, 9) = 1.
Then 7S = {7, 14, 28, 35, 49, 56}, whose remainders mod 9 correspond to {7, 5, 1, 8, 4, 2} =
S.

Theorem 4.6 (Euler’s Theorem). If gcd(a, n) = 1, then aϕ(n) ≡ 1 (modn).

Proof. Let gcd(a, n) = 1. Theorem 4.5 allows us to have two reduced residue systems
S = {r1, r2, . . . , rϕ(n)} and {ax | x ∈ S}. Hence,

r1 × r2 × · · · × rϕ(n) ≡ ar1 × ar2 × · · · × arϕ(n) (mod n)

We cancel out the common factors by Theorem 3.3 and get 1 ≡ aϕ(n) (modn). ▽

Problem 37. Use Euler’s theorem to compute the power mod operation.
(a) 72699 %10 (b) 719392 %11 (c) 51234567 %18 (d) 11123 %25

Theorem 4.7. Let gcd(a, n) = 1 and gcd(e, ϕ(n)) = 1. Then the solution to the
congruence xe ≡ a (modn) is given by x ∈ [ad]n where d = e−1 %ϕ(n).

Proof. We write de = 1 + ϕ(n)k for some k ∈ Z, so that xde = x(xϕ(n))k. Thus by
Euler’s theorem, xde ≡ x (mod n) for all x ∈ Z with gcd(x, n) = 1. This proves that
xe ≡ a (modn) is equivalent to x ≡ ad (modn). ▽

Example. Solve the congruence x3 ≡ 9 (mod 25).
Solution. We have ϕ(25) = 20 and choose d = 3−1 %20 = 7, so x ∈ [97]25 = [19]25.

Problem 38. Solve the congruence.
(a) x5 ≡ 2(mod 13) (b) x7 ≡ 5(mod 32) (c) x17 ≡ 3(mod 55) (d) x39 ≡ 2(mod 121)

Example (The RSA Cryptosystem). Ali wants to send a secret number x (e.g., a credit
card) to Beth over a non-secure internet connection. Beth sends first to Ali the integers
e and n > x. Beth has obtained n as the product of two primes, i.e., n = p× q, and no
one but Beth knows p and q. Upon receiving e and n, Ali computes xe %n = a (using
successive squaring algorithm) and sends a to Beth. Meanwhile, Beth has computed
d = e−1 %ϕ(n) (extended euclidean algorithm) using her secret ϕ(pq) = (p− 1)(q− 1).
After receiving a from Ali, Beth relies on Theorem 4.7 to retrieve the secret number,
i.e., ad %n = x.

If a hacker intercepts e, n, and a, they will yet need p and q to discover the value
of x. Hence, the RSA cryptosystem is only as secure as factoring n is hard. In fact,
factoring takes exponential time with respect to digital length. For medium security,
today’s RSA implementation requires that n be around 1024 bits in size, i.e., of about
300 decimal digits.
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Problem 39. Beth has chosen p = 127, q = 79, and e = 17.
(a) What numbers does Beth send to Ali?
(b) If Ali’s secret number is x = 2019, what does he send to Beth?
(c) Help Beth compute her decryption key d.
(d) Verify that using d, Beth will retrieve Ali’s secret number correctly.

Problem 40. Factor 11371 into two primes, assuming we know that ϕ(11371) = 11152.

5 Primitive Roots
Definition. Let gcd(a, n) = 1. The order of a mod n, denoted by |a|n, is the smallest
k ∈ N such that ak %n = 1. Observe that by definition, integers of the same residue
class have the same order. Let us agree that whenever we have |a|n, we also implicitly
assume that gcd(a, n) = 1, hence |a|n ≤ ϕ(n) by Euler’s theorem.

Example. We have |2|7 = 3, because 23 %7 = 1 and k = 3 is the least positive
exponent with such property. Also |3|7 = 6.

Problem 41. Evaluate the order mod n.
(a) |7|11 (b) |7|12 (c) |5|18 (d) |2|25

Problem 42. Prove that ak %n = 1 for some k ∈ N if and only if gcd(a, n) = 1.

Theorem 5.1 (Properties of Order Mod).

1. If a ≡ b (modn), then |a|n = |b|n.

2. We have ak %n = 1 if and only if |a|n | k.

3. The order of a divides phi of n, i.e., |a|n | ϕ(n).

4. We have aj ≡ ak (modn) if and only if j ≡ k (mod |a|n).

Proof. In class. ▽

Problem 43. Prove each statement.
(a) If a ≡ b−1 (mod n), then |a|n = |b|n.
(b) If gcd(|a|n, |b|n) = 1, then |ab|n = |a|n × |b|n.
(c) If |a|n = n− 1 for some a ∈ Z, then n is prime.

Definition. When we have |g|n = ϕ(n), we call g a primitive root modulo n.

Example. Find all the primitive roots modulo 7 and modulo 8.
Solution. Let S = {1, 2, 3, 4, 5, 6}, a reduced residue system modulo 7, where ϕ(7) = 6.
For each a ∈ S, we find that |a|7 = 6 if and only if a = 3 or a = 5. Hence the primitive
roots modulo 7 are given by the two classes [3]7 and [5]7. In a similar way, we find that
modulo 8 has no primitive roots.

Problem 44. Find all the primitive roots modulo n.
(a) n = 11 (b) n = 12 (c) n = 13 (d) n = 14

Theorem 5.2. Suppose that gcd(g, n) = 1. Then g is a primitive root modulo n if
and only if the set G = {gk | 1 ≤ k ≤ ϕ(n)} is a reduced residue system modulo n.
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Proof. Let g be a primitive root. It is clear that gcd(gk, n) = 1. And if gj ≡ gk (modn)
with 1 ≤ k < j ≤ ϕ(n), then by Theorem 5.1, ϕ(n) | (j−k), which is not possible since
ϕ(n) > j − k. Hence, gj ̸≡ gk (mod n) and G is a reduced residue system modulo n.

Conversely, let G be a reduced residue system. Since elements of G are distinct
modulo n, and gϕ(n) ≡ 1 (mod n) by Euler’s theorem, then ϕ(n) is the smallest expo-
nent with this property, i.e., |g|n = ϕ(n) and g is primitive root. ▽

Theorem 5.3. For all k ∈ N, we have

|ak|n =
|a|n

gcd(k, |a|n)

In particular, |ak|n = |a|n if and only if gcd(k, |a|n) = 1.

Proof. Let m = |a|n and h = |ak|n. We shall establish the equality h = m/ gcd(k,m).
First note that if d is any common divisor of k and m, then

(ak)
m
d = (am)

k
d ≡ 1 (mod n)

so we know that h ≤ m/ gcd(k,m). Now the congruence (ak)m = (am)k ≡ 1 (mod n)
implies that h | m by Theorem 5.1. We write ht = m for some t ∈ N. Again by
the same theorem, the congruence (ak)h ≡ 1 (mod n) implies that m | kh. We write
ms = kh for some s ∈ N. These two identities give st = k, so we have shown that t | m
and t | k. Hence, t ≤ gcd(k,m) and h = m/t ≥ m/ gcd(k,m). ▽

Problem 45. Evaluate |2k|13 for all k ∈ {1, 2, . . . , 12}.

Problem 46. Evaluate |g15|27 if g is a primitive root modulo 27.

Example. The primitive root 2 modulo 13 corresponds to the reduced residue system
{2, 22, . . . , 212}, according to Theorem 5.2. We verify this fact in the following table.

k 1 2 3 4 5 6 7 8 9 10 11 12
2k %13 2 4 8 3 6 12 11 9 5 10 7 1

Theorem 5.3 says that |2k|13 = |2|13 if and only if gcd(k, 12) = 1, i.e., k = 1, 5, 7, 11.
Hence, all the primitive roots modulo 13 are given by the four classes [21, 25, 27, 211]13 =
[2, 6, 11, 7]13.

Problem 47. Find all the primitive roots modulo 17, given that g = 3 is one of them.

Theorem 5.4. There are exactly ϕ(ϕ(n)) primitive root classes modulo n, if one exists.

Proof. Theorem 5.2 allows us to have a reduced residue system modulo n of the form
{gk | 1 ≤ k ≤ ϕ(n)}, assuming that |g|n = ϕ(n). Theorem 5.3 implies that |gk|n = ϕ(n)
too if and only if gcd(k, ϕ(n)) = 1. In the range 1 ≤ k ≤ ϕ(n), there are ϕ(ϕ(n)) such
k and that many primitive roots. ▽

Problem 48. Determine the number of primitive root classes, assuming they exist.
(a) n = 27 (b) n = 38 (c) n = 250 (d) n = 239

Theorem 5.5. Primitive roots exist modulo any prime number p.
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Proof. (1) The congruence f(x) ≡ 0 (mod p) has at most deg f solution classes:
If f(x) = ax+ b with p ∤ a, then f has a unique zero class [−ba−1]p. By induction,

let us assume the result for all deg f ≤ n−1, and let f(x) be a polynomial with leading
term axn, again p ∤ a. If f has less than n zeros, then we are done; else let r1, r2, . . . , rn
be distinct zeros of f(x) modulo p, and let

g(x) = f(x)− a(x− r1)(x− r2) · · · (x− rn)

Note that deg g < n, and yet g has the same n zeros as f has. By induction hypothesis
this is impossible unless g(x) is the zero polynomial (mod p), i.e.,

f(x) ≡ a(x− r1)(x− r2) · · · (x− rn) (mod p)

And by Theorem 2.3, we have f(x) ≡ 0 (mod p) if and only if x ∈ [rj]p for 1 ≤ j ≤ n.
(2) If d | (p−1), then the congruence xd ≡ 1 (mod p) has exactly d solution classes:
Suppose dk = p− 1, so that we have the polynomial identity

xp−1 − 1 = (xd − 1)
(
(xd)k−1 + (xd)k−2 + · · ·+ xd + 1

)
By Fermat’s little theorem, xp−1−1 has exactly p−1 zeros modulo p. Since p is prime,
these zeros must come from those of the two polynomials on the right, the first of which
has at most d, and the second at most p−1−d, according to (1). This is possible only
if xd − 1 has exactly d zeros (and the second one has exactly p− 1− d zeros).

(3) Write the prime factorization p− 1 =
∏

qeii . By (2) there are exactly qe11 zeros
of xq

e1
1 ≡ 1 (mod p), each of which has order a power of q1, according to Theorem 5.1.

Similarly, however, qe1−1
1 of these are also zeros of the congruence xq

e1−1
1 ≡ 1 (mod p),

hence their orders are at most qe1−1
1 . It follows that there exist qe11 − qe1−1

1 integers of
order qe11 and, by symmetry, of order qe22 , qe33 , . . . mod p. And since their orders are
pairwise relatively prime, then the product of these integers (see Problem 43) has order∏

qeii = p− 1, i.e., a primitive root. ▽

Theorem 5.6 (The Primitive Root Theorem). Primitive roots modulo n exist if and
only if n ∈ {2, 22, pk, 2pk} for any odd prime p and any k ∈ N.

Proof. Not here. ▽

Example (Discrete Logarithm Problem). According to Theorem 5.2, if g is a primitive
root modulo n, then the congruence gx ≡ c (modn) always has a solution for every c ∈
Z with gcd(c, n) = 1. We employ this fact in solving the congruence 5x ≡ 12 (mod 13).
First, we recall the primitive root 2 modulo 13:

k 1 2 3 4 5 6 7 8 9 10 11 12
2k %13 2 4 8 3 6 12 11 9 5 10 7 1

then we rewrite the congruence using powers of 2 and apply Theorem 5.1:

29x ≡ 26 (mod 13) ⇐⇒ 9x ≡ 6 (mod 12)

From here, we go back to Theorem 3.4 and work out the solution x ∈ [2]4.

Problem 49. Solve the discrete logarithm problem.
(a) 10x ≡ 3(mod 13) (b) 6x ≡ −2(mod 13) (c) 13x ≡ 3(mod 22) (d) 3x ≡ 8(mod 23)
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Theorem 5.7. If g is a primitive root modulo a prime p > 2, then

g
p−1
2 ≡ −1 (mod p)

Proof. Let gcd(g, n) = 1, so that gp−1 ≡ 1 (mod p) by Euler’s theorem. Moreover by
Theorem 3.8, we also have g(p−1)/2 ≡ ±1 (mod p). However, if g(p−1)/2 ≡ 1 (mod p),
then |g|p ≤ (p− 1)/2 and g cannot be a primitive root, thus the claim. ▽

Problem 50. Prove each statement, where p is any odd prime.
(a) The number 4 is not a primitive root modulo p.
(b) If a ≡ x2 (mod p) for any x ∈ Z, then a is not a primitive root modulo p.
(c) If a, b are primitive roots modulo p, then ab is not a primitive root modulo p.

Problem 51. Find 3 examples of an odd prime modulo which 2 is not a primitive
root.

Problem 52. Prove that if g8 ≡ −1 (mod 17), then g is a primitive root modulo 17.

6 Quadratic Residues
Example. Find all the solution classes of the quadratic congruence x2 ≡ 23 (mod 77).
Solution. Since 77 = 7×11 with gcd(7, 11) = 1, the problem is equivalent to solving the
system x2 ≡ 23 ≡ 2 (mod 7) and x2 ≡ 23 ≡ 1 (mod 11). With prime modulus, each
has two solution classes of the form [±x]p, i.e., x ≡ ±3 (mod 7) and x ≡ ±1 (mod 11).
Hence, we have four systems of linear congruences, and Theorem 3.7 gives the solutions
x ∈ [10, 32, 45, 67]77.

Problem 53. Solve the quadratic congruence.
(a)x2≡ 29(mod 35) (b)x2≡ 31(mod 55) (c)x2≡ 30(mod 91) (d)x2≡ 106(mod 119)

Definition. Let gcd(a, n) = 1. We call a a quadratic residue or non-residue modulo
n, depending whether the congruence x2 ≡ a (modn) has a solution or no solution,
respectively. Observe that by definition, integers of the entire class [a]n are quadratic
residues or non-residues as a is.

Example. Let n = 9 and a ∈ S = {1, 2, 4, 5, 7, 8}, reduced residue system. For
each x ∈ S, we have x2 ∈ {1, 4, 16, 25, 49, 64}, whose remainders mod 9 correspond
to {1, 4, 7}. Hence, the congruence x2 ≡ a (modn) has a solution if and only if
a ∈ [1, 4, 7]9. These are the quadratic residues mod 9, while the non-residues are given
by [2, 5, 8]9.

Problem 54. Find all the quadratic residues and non-residues mod n.
(a) 12 (b) 17 (c) 19 (d) 22

Definition. Let p be an odd prime, i.e., a prime p > 2, and let a ∈ Z such that p ∤ a.
We define the Legendre symbol of a mod p to be(

a

p

)
=

{
+1 if a is a quadratic residue modulo p
−1 if a is a quadratic non-residue modulo p

Observe that by definition, integers of the same residue class have the same Legendre
symbol. Let us agree that whenever we write

(
a
p

)
, we assume that p is an odd prime

and p ∤ a.
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Example. We have
(
2
7

)
= +1 because x2 ≡ 2 (mod 7) has a solution, e.g., x = 3; and(

6
7

)
= −1 because x2 ≡ 6 (mod 7) has no solution.

Theorem 6.1 (Euler’s Criterion). The Legendre symbol satisfies the congruence(
a

p

)
≡ a

p−1
2 (mod p)

Consequently, we have(
ab

p

)
=

(
a

p

)(
b

p

)
and

(
−1

p

)
= (−1)

p−1
2

Proof. Suppose that
(
a
p

)
= +1. Then a ≡ x2 (mod p) for some x ∈ Z. Note that

gcd(x, p) = 1, and so a
p−1
2 ≡ xp−1 ≡ 1 (mod p) by Fermat’s little theorem. Hence,(

a
p

)
≡ a

p−1
2 (mod p). Now suppose that

(
a
p

)
= −1, and let g be a primitive root

modulo p. By Theorem 5.2, a ≡ gk (mod p) for some k ∈ N. Since a is a quadratic
non-residue, it is necessary that k is odd, say k = 2m + 1. Then a

p−1
2 ≡ (g2mg)

p−1
2 =

(gp−1)m g
p−1
2 ≡ g

p−1
2 ≡ −1 (mod p) by Theorem 5.7. Hence,

(
a
p

)
≡ a

p−1
2 (mod p). ▽

Example. We have
(

5
13

)
≡ 56 (mod 13). Since 15625 ≡ −1 (mod 13), then

(
5
13

)
= −1.

Problem 55. Evaluate the Legendre symbol using Euler’s criterion.
(a)

(
3
13

)
(b)

(−3
13

)
(c)

(
5
17

)
(d)

(
15
17

)
Problem 56. Prove that

(
−1

p

)
=

{
+1 if p%4 = 1
−1 if p%4 = 3

Problem 57. Prove that if g is a primitive root modulo p, then
(
g
p

)
= −1.

Theorem 6.2 (Gauss’ Lemma). Let d = p−1
2

and A = {ak | 1 ≤ k ≤ d}. If n is the
number of integers in {x% p | x ∈ A} which are larger than d, then

(
a
p

)
= (−1)n.

Proof. Let H = {1, 2, . . . , d} and note that {±r | r ∈ H} is a reduced residue system
modulo p. By Theorem 4.1, elements in A are from distinct residue classes, hence n
is the number of integers x ∈ A for which x ≡ −r (mod p) for some r ∈ H. Moreover
observe that it is impossible to have x, y ∈ A with x ∈ [r]p and y ∈ [−r]p, because then
p | x+ y = aj, with 2 ≤ j ≤ 2d = p− 1, and p divides neither a nor j. It follows that
the d elements of A are congruent to those in H, except that n of them need a minus
sign, i.e., a× 2a× · · ·× da ≡ (−1)n 1× 2× · · ·× d (mod p). We may divide both sides
by d ! to obtain ad ≡ (−1)n (mod p), and the result follows by Euler’s criterion. ▽

Example. Consider
(

5
13

)
, where A = {5, 10, 15, 20, 25, 30}. Their remainders mod 13

correspond to {5, 10, 2, 7, 12, 4}. Three of these are larger than 6, so
(

5
13

)
= (−1)3 = −1.

Problem 58. Repeat Problem 55 using Gauss’ lemma.

Theorem 6.3 (Eisenstein’s Lemma). If a is odd, then

(
a

p

)
= (−1)m where m =

p−1
2∑

k=1

⌊
ak

p

⌋
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Proof. Our goal is to have m ≡ n (mod 2), with the number n from Gauss’ lemma, so
then (−1)m = (−1)n. Now let H = {1, 2, . . . , d = p−1

2
}. In the proof of Gauss’ lemma,

the set {ak | k ∈ H} ≡ {±r | r ∈ H} (mod p), with exactly n of them need the minus
sign, i.e., where ak% p = p− r. Since ak = ⌊ak/p⌋p+ ak% p, we get the identity

d∑
k=1

ak =
d∑

k=1

⌊
ak

p

⌋
p+

n∑
i=1

(p− ri) +
d∑

j=n+1

rj

where {ri | i ∈ H} = H, so we also have
d∑

k=1

k =
n∑

i=1

ri +
d∑

j=n+1

rj

Subtracting this last equation from the one preceding will get us

(a− 1)
d∑

k=1

k =
d∑

k=1

⌊
ak

p

⌋
p+

n∑
i=1

p− 2
n∑

i=1

ri

We now take remainder mod 2, where both a%2 = 1 and p%2 = 1, and conclude that
0 ≡ m+ n− 0 (mod 2), i.e., that m ≡ n (mod 2). ▽

Example. Consider
(

5
13

)
, where d = 6. Here m = ⌊ 5

13
⌋+ ⌊10

13
⌋+ ⌊15

13
⌋+ ⌊20

13
⌋+ ⌊25

13
⌋+

⌊30
13
⌋ = 0 + 0 + 1 + 1 + 1 + 2 = 5. Hence,

(
5
13

)
= (−1)5 = −1.

Problem 59. Repeat Problem 55 using Eisenstein’s lemma.
Theorem 6.4. We have the Legendre symbol formula(

2

p

)
= (−1)

p2−1
8

Proof. In the last identity of the preceding proof, let a = 2 and note that ⌊2k/p⌋ = 0 for
all k ∈ H. Hence, we get

∑d
1 k ≡ 0+n−0 (mod 2), implying that (−1)n = (−1)1+2+···+d.

But note that 1 + 2 + · · ·+ p−1
2

= p2−1
8

, and that (−1)n =
(
2
p

)
by Gauss’ lemma. ▽

Problem 60. Prove that
(

2

p

)
=

{
+1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8)

Theorem 6.5 (The Quadratic Reciprocity Law). If p and q are distinct odd primes,
then (

q

p

)
=

(
p

q

)
(−1)(

p−1
2 )( q−1

2 )

Proof. Let P = {x | 1 ≤ x ≤ p−1
2
} and Q = {y | 1 ≤ y ≤ q−1

2
}. Then P × Q

contains
(
p−1
2

) (
q−1
2

)
elements which we bipartition into S1 = {(x, y) | py < qx} and

S2 = {(x, y) | qx < py}. (Note that py = qx is not possible as p ∤ qx.) For each x ∈ P,
we have (x, y) ∈ S1 if and only if 1 ≤ y ≤ ⌊qx/p⌋, and similarly for S2. Hence,

|S1| =

p−1
2∑

x=1

⌊
qx

p

⌋
and |S2| =

q−1
2∑

y=1

⌊
py

q

⌋
So by Eisenstein’s lemma, (−1)|S1| =

(
q
p

)
and (−1)|S2| =

(
p
q

)
. Then with the fact that

|S1|+ |S2| = |P ×Q|, we conclude that
(
q
p

)(
p
q

)
= (−1)(

p−1
2 )( q−1

2 ). ▽
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Example. Consider
(
792
929

)
. Since 792 = 23×32×11, we have

(
792
929

)
=

(
2

929

)(
11
929

)
. Then

we evaluate separately,
(

2
929

)
= (−1)107880 = +1 and

(
11
929

)
=

(
929
11

)
(−1)464×5 =

(
5
11

)
=(

11
5

)
(−1)5×2 =

(
1
5

)
= +1. The result,

(
792
929

)
= (+1)(+1) = +1.

Problem 61. Evaluate the Legendre symbol using the reciprocity law.
(a)

(
37
83

)
(b)

(
71
103

)
(c)

(−69
239

)
(d)

(
1414
2063

)
Problem 62. Prove that

(
q
p

)
=

(
p
q

)
if and only if either p%4 = 1 or q%4 = 1.

Theorem 6.6. Suppose that p ∤ a. Then the quadratic congruence ax2 + bx + c ≡ 0
(mod p) has a solution if and only if(

b2 − 4ac

p

)
≥ 0

Here we allow the possibility that b2 − 4ac ≡ 0 (mod p), in which case we agree to
define the Legendre symbol

(
a
p

)
= 0 when p | a.

Proof. In class. ▽
Problem 63. Determine there is solution or no solution.

(a) x2 +1 ≡ 0 (mod 101) (b) x2 +2 ≡ 5x (mod 29) (c) 2x2 ≡ 18x+24 (mod 43)
(d) 13x2 − 56x ≡ 44 (mod 79)

Definition. Let n = p1 × p2 × · · · × pk be the product of odd primes, not necessarily
distinct. With gcd(a, n) = 1, we define the Jacobi symbol of a mod n to be(

a

n

)
=

(
a

p1

)
×

(
a

p2

)
× · · · ×

(
a

pk

)
where each term is the Legendre symbol. Hence

(
a
n

)
= ±1, and is a generalization of

the Legendre symbol where the modulus is now allowed to be an odd composite.
Observe that integers of the same residue class will have the same Jacobi symbol.

Let us agree that whenever we write
(
a
n

)
, we assume that n is odd and gcd(a, n) = 1.

Theorem 6.7 (Properties of the Jacobi symbol).
1.

(
ab
n

)
=

(
a
n

)(
b
n

)
2.

(−1
n

)
= (−1)

n−1
2

3.
(
2
n

)
= (−1)

n2−1
8

4.
(
m
n

)
=

(
n
m

)
(−1)(

n−1
2 )(m−1

2 )

where m is another odd number relatively prime to n.
Proof. In class. ▽
Example. Although 35 is composite, we may treat the Legendre symbol

(
35
97

)
as a

Jacobi symbol, i.e.,
(
35
97

)
=

(
97
35

)
(−1)48×17 =

(
27
35

)
=

(
35
27

)
(−1)17×13 = −

(
8
27

)
= −

(
2
27

)
=

−(−1)91 = +1.
Problem 64. Evaluate the Legendre symbol

(
210
317

)
in two ways, first without using

Jacobi symbol, then again as a Jacobi symbol.
Problem 65. Prove that if the Jacobi symbol

(
a
n

)
= −1, then a is a quadratic non-

residue modulo n.
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1. (a) 3 (b) 21 (c) 26 (d) –15

2. (a) 9 (b) 2 (c) 21 (d) 0

3. Let n = 2k + 1 or n = 2k.

4. Use Theorem 1.3.

5. (a) 9 (b) 2 (c) 26 (d) 3

6. gcd = (a) 1 (b) 9 (c) 5 (d) 1

7. Use Theorem 1.6.

8. Use Theorem 1.6.

9. Use Theorem 1.7.

10. (a) (−21+55k, 13−34k) (b) ∅ (c) (−49+
17k, 14− 5k) (d) (24 + 7k, 40 + 12k)

11. Prove the contrapositive.

12. Use Theorem 1.2 with n = 6.

13. (a) C (b) C (c) P (d) C

14. p = (a) 29 (b) 97 (c) 79 (d) 239

15. (a) 1 (b) 1 (c) 89 (d) 101

16. Use Theorem 2.3.

17. (a) 30 (b) 11 (c) 32 (d) 28

18. (a) 8 (b) 2 (c) 99225 (d) 303

19. 42,826,261

20. Convert to divisibility.

21. Use Theorem 1.4.

22. Use Theorem 1.6.

23. Convert to equality.

24. (a) [12]13 (b) [3]7 (c) [172]341 (d) [64]97

25. (a) 19 (b) 35 (c) 31 (d) 109

26. (a)[101]400 (b)[533]990 (c)[1000] (d)[269]

27. Use Theorem 2.3.

28. (a) 100 (b) 17 (c) 156 (d) 11

29. Use Wilson’s theorem.

30. (a) 8 (b) 7 (c) 47 (d) 49

31. Use Fermat’s little theorem.

32. (a) 54 (b) 100 (c) 500 (d) 512

33. Use definition of RRS.

34. (a) 96 (b) 18 (c) 1280 (d) 6400

35. First factor n into primes.

36. Factor n into primes.

37. (a) 3 (b) 5 (c) 5 (d) 6

38. (a) [6]13 (b) [13]32 (c) [38]55 (d) [39]121

39. (a) 10033, 17 (b) 4655 (c) 4625 (d) 2019

40. 83× 137

41. (a) 10 (b) 2 (c) 6 (d) 20

42. Use Euler’s theorem and Theorem 3.5.

43. Use Theorem 5.1.

44. (a)[2, 6, 7, 8] (b)∅ (c)[2, 6, 7, 11] (d)[3, 5]

45. 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 1

46. 6

47. [3, 5, 6, 7, 10, 11, 12, 14]17

48. (a) 6 (b) 6 (c) 40 (d) 96

49. (a) [4]6 (b) [11]12 (c) [8]10 (d) [10]11

50. Use Theorem 5.7.

51. Many examples (12 such p < 100).

52. Use contradiction and Theorem 5.1.3.

53. (a) [8, 13, 22, 27]35 (b) [14, 19, 36, 41]55
(c) [11, 24, 67, 80]91 (d) [15, 36, 83, 104]

54. (a) [1]12 (b) [1, 2, 4, 8, 9, 13, 15, 16]17 (c)
[1, 4, 5, 6, 7, 9, 11, 16, 17] (d) [1, 3, 5, 9, 15]

55. (a) +1 (b) +1 (c) −1 (d) +1

56. Let p = 4k + 1 and p = 4k + 3.

57. Use Theorem 5.7 and Euler’s criterion.

58. (a) +1 (b) +1 (c) −1 (d) +1

59. (a) +1 (b) +1 (c) −1 (d) +1

60. Let p = 8k ± 1 and p = 8k ± 3.

61. (a) +1 (b) −1 (c) +1 (d) +1

62. Let p = 4k ± 1 and q = 4h± 1.

63. (a) Yes (b) No (c) Yes (d) Yes (64) −1


