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INFINITE COUNTABLE SETS

Amin Witno

Abstract

We introduce the cardinal numbers in association with the cardinality of an
arbitrary set and the ordering relation which leads to the important theorem of
Cantor and the continuum hypothesis.

These notes are written to supplement Homework Set #10 in the Set Theory course
(Math 251) at Philadelphia University, Jordan. Outline notes are more like a revision.
No student is expected to fully benefit from these notes unless they have regularly
attended the lectures.1

Cardinality

For any set A, not assumed finite, we denote by |A| what we call the cardinality of
the set A. With this, we define C = {|A| | ∅ ⊆ A} and call the elements of C
cardinal numbers. For instance, |{0}|, |{0, 1, 2}|, |{3, 5, 7}|, and |Z| are some examples
of cardinal numbers.

Note that the proposition ∅ ⊆ A is a tautology, hence it applies to any set A there
is. For this reason, the set C is properly refered to as the set of all cardinal numbers.

We shall construct three binary relations on the set C, and study their properties,
in the following order.

Definition. Let A and B be two arbitrary sets, again not necessarily finite. We shall
write |A| = |B| if there exists a bijection f : A → B. Moreover, we define the relation
R= = {(|A|, |B|) | |A| = |B|}.

Before we proceed, observe that this definition agrees with the ordinary meaning
of cardinality for finite sets:

Proposition 1. Let A and B be two finite sets, and let |A| and |B| denote the number
of elements in A and B, respectively. Prove that |A| = |B| if and only if there exists a
bijection f : A → B.

Proof. In class. ▽
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Exercise 2. Suppose that |A| = |B|, where A and B are two finite sets, and consider
any function f : A → B. Show that f is injective if and only if f is surjective.

Theorem 3. The relation R= is an equivalence relation on C.

Proof. We have |A| = |A| because the identity function i(a) = a for all a ∈ A is
definitely bijective. This proves that R= is reflexive. Next, suppose that |A| = |B| and
let f : A → B be a bijection. Then f−1 : B → A is again a bijection, so |B| = |A| and
R= is symmetric. Finally, for transitive, let |A| = |B| and |B| = |C|. It follows that
there exist bijections f : A → B and g : B → C, whose composition g ◦ f : A → C is
again a bijection, proving that |A| = |C|. ▽

Having established this theorem, we shall now identify every cardinal number with
its equivalence class with respect to the equivalence relation R=. In other words, from
now on when we write |A|, we really mean the class [|A|] = {|B| | |B| = |A|}. Hence,
we consider the cardinal numbers |A| and |B| identical if |A| = |B|, i.e., if there is a
bijection f : A → B. This also explains why the equal sign “=” has been chosen to
denote the relation.

For example, we will not distinguish the cardinal number |{0, 1, 2}| from the cardinal
number |{3, 5, 7}|. As a consequence, the set C of cardinal numbers is now “reduced”,
containing only cardinal numbers which are distinct one from another—distinct here
refers to |A| and |B| for which (|A|, |B|) ̸∈ R=, and for which we may write |A| ≠ |B|.

Definition. Let us denote the cardinality of the set of natural numbers by ℵ0—to be
read aleph naught. Thus, ℵ0 = |N|.

For example, observe that the function f(n) = n + 1 is a bijection from N onto
{2, 3, 4, . . .} and consequently, |N − {1}| = |N| = ℵ0. This is totally unacceptable if
the sets involved were finite, for a finite set cannot possibly have a cardinality equal to
that of its proper subset.

Exercise 4. Consider any finite set S ⊆ N. Prove that |N− S| = ℵ0.

Furthermore, if we consider the functions f(n) = 2n and f(n) = 2n−1, respectively,
then we may conclude that the cardinality of the set of even natural numbers, and
similarly for the odd ones, are both ℵ0, despite the fact that either set contains infinitely
less than what the set N has. Even more surprisingly, the set of all integers also has
cardinality equal to that of positive integers:

Theorem 5. We have |Z| = ℵ0.

Proof. Define the function f : Z → N by f(n) = 2n if n > 0 and by f(n) = −2n+ 1 if
n ≤ 0. In other words, the positive integers are mapped onto the even numbers, while
zero and the negative integers are mapped onto the odd numbers. It is not hard to
verify that f is a bijection. ▽

Exercise 6. Suppose that |A| = |B| = ℵ0. Show that |A ∪B| = ℵ0.

We will come back to this quantity ℵ0 after we introduce and become familiar with
the second binary relation on C, next.
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Cantor

Definition. We shall write |A| ≤ |B| to mean that there exists an injection f : A → B.
With this notation, we define the relation R≤ on C by R≤ = {(|A|, |B|) | |A| ≤ |B|}.

Because a bijection is also an injection, we have R= ⊆ R≤. In other words, if we
have |A| = |B|, then we also have |A| ≤ |B|. Moreover, as before, we shall show that
this definition again coincides with the meaning of cardinality for finite sets:

Proposition 7. Let A and B be two finite sets, and let |A| and |B| denote the number
of elements in A and B, respectively. Prove that |A| ≤ |B| if and only if there exists
an injection f : A → B.

Proof. In class. ▽

Exercise 8. With finite sets, prove that |A| ≤ |B| if and only if there exists a surjection
f : B → A.

Theorem 9. The relation R≤ on C is both reflexive and transitive.

Proof. For any set A, the identity function on A is an injection, hence |A| ≤ |A|. It is
also clear that the composition of two injections is again an injection, i.e., if |A| ≤ |B|
and |B| ≤ |C|, then |A| ≤ |C| by way of composition. ▽

Exercise 10. If A ⊆ B, prove that |A| ≤ |B|.

We shall see next that R≤ is also anti-symmetric, which therefore makesR≤ a partial
order relation. It is generally accepted that Cantor was the one who proposed this fact,
without providing a proof. The first complete proof was presented by Bernstein and
another, independently, by Schroeder.

Theorem 11. Let A and B be two arbitrary sets such that |A| ≤ |B| and |B| ≤ |A|.
Then |A| = |B|.

To prove the theorem, we let f : A → B and g : B → A be a pair of injections. We
shall construct a bijection F : A → B following a series of steps in this order:

1. Let A0 = A and B0 = B. We define the sets An and Bn for n ≥ 1 inductively as
follows. Set A1 = g(B0) and B1 = f(A0). Then for n ≥ 2 we let An = g(Bn−1)
and Bn = f(An−1). We claim that A0 ⊇ A1 ⊇ A2 ⊇ · · · and similarly also
B0 ⊇ B1 ⊇ B2 ⊇ · · ·

2. Let Sn = An − An+1 and Tn = Bn −Bn+1 for all n ≥ 0. From the previous step,
we see that the sets Sn are disjoint one from another, and similarly for Tn as well.
We claim that for all n ≥ 0, we have f(Sn) = Tn+1, hence |Sn| = |Tn+1|; and
similarly g(Tn) = Sn+1, hence |Tn| = |Sn+1|.

3. We next define
S = A−

∪
n≥0

Sn and T = B −
∪
n≥0

Tn

Thus we partition the set A into the disjoint subsets S, S0, S1, S2, . . ., and similarly
B into T, T0, T1, T2, . . . We claim that f(S) = T , hence |S| = |T |.
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The function F : A → B is finally constructed by setting

F (a) =


f(a) if a ∈ Sn and n is even

g−1(a) if a ∈ Sn and n is odd
f(a) if a ∈ S

That F is a bijection follows from the fact that F is put together from the pieces of
bijections between these partitioning subsets of A and B.

Proof of (1). It is clear that A1 ⊆ A0 and B1 ⊆ B0. Furthermore, A2 = g(B1) ⊆
g(B0) = A1 and B2 = f(A1) ⊆ f(A0) = B1. We proceed by induction. Since An =
g(Bn−1) and An+1 = g(Bn), the hypothesis Bn ⊆ Bn−1 implies that g(Bn) ⊆ g(Bn−1),
i.e., An+1 ⊆ An. Similarly, if An ⊆ An−1, then f(An) ⊆ f(An−1) and Bn+1 ⊆ Bn. ▽

Proof of (2). The fact that An+1 ⊆ An implies that f(An −An+1) = f(An)− f(An+1).
Hence f(Sn) = Bn+1−Bn+2 = Tn+1. Similarly, we also have g(Tn) = g(Bn)−g(Bn+1) =
An+1 − An+2 = Sn+1. ▽

Proof of (3). First let x ∈ S and we will show that f(x) ∈ T , hence f(S) ⊆ T . By
definition, if x ∈ S then x ̸∈ Sn for any n ≥ 0. Since f(Sn) = Tn+1 and f is injective,
we conclude that f(x) ̸∈ Tn for any n ≥ 1. It is clear that also f(x) ̸∈ T0 because
T0 = B − f(A) and x ∈ A. It follows that f(x) ∈ T .

Now let y ∈ T and we will show that f(x) = y for some x ∈ S, in order to prove that
f(S) = T . By definition, if y ∈ T then y ̸∈ Tn for any n ≥ 0. Since Tn = Bn − Bn+1,
we conclude that y ∈ Bn for all n ≥ 1, i.e., that y ∈ f(An) for all n ≥ 0. It follows
that, since f is injective, there is a unique x ∈ A such that f(x) = y and such that
x ∈ An for all n ≥ 0, hence x ̸∈ Sn for any n ≥ 0 and so x ∈ S. ▽

In fact, not only that R≤ is a partial ordering, but R≤ is furthermore a total order
relation on C. What this means is that given any two sets A and B, either |A| ≤ |B| or
|B| ≤ |A| must hold. (If both hold, of course, then |A| = |B|.) However, this advanced
result is beyond our range of study. Instead later, in Theorem 15 we will establish a
weaker fact, i.e., a special case in which B = N. For now, we can use Theorem 11 to
prove another amazing fact: that the set of rational numbers and the set of natural
numbers have the same cardinality.

Theorem 12. We have |Q| = ℵ0.

Proof. Since it is obvious that |N| ≤ |Q|, using Theorem 11 we will be done if we can
demonstrate that |Q| ≤ |N|. Let A = Z × N. Every rational number in its reduced
form can be expressed as m/n with m ∈ Z and n ∈ N. This gives a natural injection
which implies that |Q| ≤ |A|. Furthermore, by Theorem 5 we can find a bijection from
Z onto N which by extension becomes a bijection that gives |A| = |N× N|. Hence, by
transitivity, we are left to showing that |N × N| ≤ |N|. We do this via the function
f(m,n) = 2m × 3n, which is an injection for if 2m × 3n = 2m

′ × 3n
′
, then m = m′ and

n = n′ by the uniqueness of prime factorization. ▽

Exercise 13. Suppose that |A| = |B| = ℵ0. Prove that |A×B| = ℵ0.
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It was Cantor again who introduced Theorem 12 and proved it. Of course, Cantor
did not use Theorem 11 to establish Theorem 12 because he had not proved the former.
Instead, Cantor showed that the rational numbers can be ordered a1, a2, a3, . . . to make
the one-to-one correspondence with the natural numbers. To illustrate how this is
done, it suffices to consider only the positive numbers—partially listed in the following
matrix.

1 2 3 4 5 6 7 8 9 10 11 12 · · ·
1
2

3
2

5
2

7
2

9
2

11
2

13
2

15
2

17
2

19
2

21
2

· · ·
1
3

2
3

4
3

5
3

7
3

8
3

10
3

11
3

13
3

14
3

· · ·
1
4

3
4

5
4

7
4

9
4

11
4

13
4

15
4

17
4

· · ·
1
5

2
5

3
5

4
5

6
5

7
5

8
5

9
5

· · ·
1
6

5
6

7
6

11
6

13
6

17
6

19
6

· · ·
. . .

Observe that the i-th row contains all reduced fractions of the form a/i, in increasing
order as we go from left to right. The counting is done columnwise, left to right:

1, 2,
1

2
, 3,

3

2
,
1

3
, 4,

5

2
,
2

3
,
1

4
, 5,

7

2
,
4

3
,
3

4
,
1

5
, 6, · · ·

e.g., the twentieth rational number in this ordering would be 2/5. In this way, it is
clear that every positive rational number a/i has a definite place in the matrix, say the
k-th place in the sequence, giving the bijection f(a/i) = k onto N.

Countability

Definition. Let us call a set A countable if |A| ≤ ℵ0. In other words, A is countable
when there exists an injection f : A → N.

The following are several examples to illustrate this definition of countability.

1. The set N itself is countable by the reflexivity |N| ≤ |N|.

2. Every subset of a countable set is again countable. For if S ⊆ A, then |S| ≤ |A|
according to Exercise 10. If in addition A is countable, i.e., if |A| ≤ ℵ0, then
|S| ≤ ℵ0 by transitivity.

3. Every finite set is countable, for if A = {a1, a2, . . . , an}, then f(ak) = k is an
injection from A into N.

4. The set Z is countable, according to Theorem 5.

5. The set Q is countable, according to Theorem 12.

Exercise 14. Revisit Exercises 6 and 13. Explain why the union and the cross product
of two countable sets are also countable.

Having seen that |A| ≤ |N| for every finite set A, we shall also demonstrate the
converse: If A is an infinite set, then |N| ≤ |A|. For if A is infinite, we can find
an infinite sequence of distinct elements of A, denoted by a1, a2, a3, . . ., then consider
f(k) = ak for an injection from N into A.
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In particular, when A is countable, i.e., |A| ≤ ℵ0, as well as infinite, i.e., ℵ0 ≤ |A|
by the preceding argument, then we will have |A| = ℵ0 by Theorem 11. If A is finite,
and though |A| ≤ ℵ0, we will never have |A| = ℵ0 since N is infinite. We wish to be
able to express this last fact by writing |A| < ℵ0, after the following definition.

Definition. Let the relation R< on C be defined by R< = R≤ − R=. Equivalently,
(|A|, |B|) ∈ R< if and only if |A| ≤ |B| but |A| ̸= |B|, in which case we shall write
|A| < |B|. Alternately, we may write |B| > |A| instead of |A| < |B|.

With this definition, we are able to state as a nice theorem the results already
discussed in the preceding paragraphs, as follows.

Theorem 15. For any set A, exactly one of the following three mutually exclusive
properties must hold.

1. A is finite (hence countable) and |A| < ℵ0.

2. A is infinite, countable, and |A| = ℵ0.

3. A is infinite, not countable, and |A| > ℵ0.

Thus, there are exactly two kinds of countable sets: finite sets and those with
cardinality ℵ0. Moreover, there are exactly two kinds of infinite sets: those with cardi-
nality ℵ0 and those which are not countable—this uncountable latter kind is formally
introduced as follows.

Definition. We call a set A uncountable when |N| < |A|, i.e., when |A| > ℵ0.

Theorem 15 assures that being uncountable is truly the negation of being countable,
in the mathematical as well as in the English sense. Up to now we have not seen an
example of an uncountable set. To find a first example, we will use the next theorem.

Theorem 16. For any set A, we have |A| < |P (A)|.

Proof. The function f(a) = {a} is clearly an injection from A into P (A), hence we have
|A| ≤ |P (A)|. Now let g : A → P (A) be any injection. To prove that |A| ̸= |P (A)|,
we must show that g(A) ̸= P (A), i.e., we will produce an element S ∈ P (A) − g(A).
Simply let S = {x ∈ A | x ̸∈ g(x)}. Then S ⊆ A, hence S ∈ P (A). Now for all a ∈ A,
we have a ∈ S if and only if a ̸∈ g(a). Hence it is impossible to have g(a) = S, and so
S ̸∈ g(A). ▽

Hence, in particular, we may conclude that the power set of the natural numbers is
uncountable, since |P (N)| > |N| = ℵ0. Another example of an uncountable set is given
by the real numbers:

Theorem 17. The set R is uncountable.

Proof. By transitivity, it suffices to show that |P (N)| ≤ |R|. We do this by constructing
the injection f : P (N) → R defined by f(S) =

∑
i∈S 10−i for every S ⊆ N. To

illustrate, we have f({1, 2, 3}) = 0.111 and f(N) = 1/9. It is clear that f is indeed an
injection and we need only remark that the series given by f(S) is convergent, e.g., by
comparison test with the geometric series

∑
i≥1 10−i. ▽



WON 1 – Infinite Countable Sets 7

Continuum

Definition. Following Cantor, having shown that |R| > ℵ0, let us set |R| = c and call
this cardinal number c the cardinality of the continuum.

In the proof of Theorem 17, and combined with Theorem 16, we see the ordering
ℵ0 < |P (N)| ≤ c. We will now show that actually P (N) also has the cardinality of the
continuum.

Theorem 18. We have |P (N)| = c.

Proof. With Theorem 11, we need only show that |R| ≤ |P (N)|. Consider the real
interval I = [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}. First we shall demonstrate that |I| ≤ |P (N)|,
as follows. Every x ∈ I can be uniquely expressed in the form x =

∑
i≥1 ai×2−i, where

ai ∈ {0, 1}. (This is none other than the binary representation of the number x ∈ [0, 1].
In particular, x = 0 if and only if ai = 0 for all i ≥ 1, and x = 1 = 0.1 if and only if
ai = 1 for all i ≥ 1.) It is then clear that we have an injection f : I → P (N) given by
f(x) = {i ∈ N | ai = 1}, e.g., f(0) = ∅, f(1

2
) = {1}, and f(1) = N.

Next, we shall show that |R| ≤ |I|, so the theorem will follow by transitivity. We
know from Calculus that f(x) = tan x is a bijection from the interval (−π/2, π/2) onto
R. With scaling and transposition, we get the bijection F (x) = tan(πx − π/2) from
the interval (0, 1) to R. In all, we have the ordering |R| = |(0, 1)| ≤ |[0, 1]| ≤ |P (N)|
and the proof is complete. ▽

Exercise 19. Find a suitable bijection to show that the positive real interval (0,∞) =
{x ∈ R | x > 0} is uncountable with |(0,∞)| = c.

The so-called Cantor’s continuum hypothesis assumes that there is no cardinal
number strictly between ℵ0 and c, i.e., that there is no set A for which |N| < |A| < |R|.
As an advanced result, it has been demonstrated by Cohen that Cantor’s continuum
hypothesis is independent from the rest of the common axioms of set theory.

Conclusion

We have established that R≤ is a partial order relation on the set of cardinal numbers
and is in fact a well ordering, although we do not seek to prove the latter claim.
Nevertheless, we observe that cardinal numbers do not always obey the same laws
of ordering as natural numbers do. Loosely speaking, we have the following laws
concerning the first infinite number ℵ0. Here, note that n is understood a natural
number and that we employ 2ℵ0 to stand for |P (N)|.

1. ℵ0 ± n = ℵ0

2. ℵ0 + ℵ0 = ℵ0

3. ℵ0 × n = ℵ0

4. ℵ0 × ℵ0 = ℵ0

5. ℵn
0 = ℵ0

6. ℵ0 < 2ℵ0 < 22
ℵ0 < · · ·


