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Chapter 1
Propositional Logic

A proposition is a statement which has a truth value: either true or false. 

Examples: 1)   Amman is in Jordan
2) 2 + 2 = 4
3) 2 + 2 = 5

Some statements are not a proposition because they have no truth values. 

Examples: 1)   Philadelphia University
2) n + n = 2n
3) x + y = 0

The negation of a proposition p (not p) is denoted by ¬p. 

Examples: 1)   p: Amman is in Jordan
¬p: Amman is not in Jordan

2) p: 2 + 2 = 5
¬p: 2 + 2 ≠ 5

The conjunction of two propositions: p ∧ q (p and q) is one whose value is true only when both 
are true. The disjunction p ∨ q (p or q) is false only when both are false.

1.1  Let p: Amman is in Jordan and q: 2 + 2 = 5.
a) What is the proposition p ∧ ¬q ?
b) What is the value of p ∧ ¬q ?
c) What is the proposition ¬p ∨ ¬q ?
d) What is the value of ¬p ∨ ¬q ?

The implication of two propositions: p → q (if p then q) is one whose value is false only when p 
is true and q is false. The biconditional p ↔ q (p if and only if q) is true only when the values of 
p and q are the same, whereas the exclusive or p ⊕ q (either p or q but not both) is true only 
when the values of p and q are not the same.

1.2   Let  p:  Today  is  cold,  q:  Today  is  hot,  and  r:  Today  is  windy.   Write  the  following  
propositions using p, q, and r.

a) Today is hot if and only if not windy.
b) Either today is cold or not cold, but not both.
c) If today is not windy then it is not hot.
d) Today is neither cold nor windy.
e) If today is windy then either it is hot or cold.

Logic operators can be presented in their truth tables:

p q p  ∧  q p  ∨  q p  →  q p  ↔  q p  ⊕  q
T T T T T T F
T F F T F F T
F T F T T F T
F F F F T T F

1.3  Draw the truth table for each of the following propositions.
a) ¬p ∨ ¬q
b) ¬(p ∧ q) → p
c) (p ⊕ ¬q) ↔ (¬p ∨ q)
d) (p → q) → r
e) [(p ∧ q) → r] ⊕ [¬p ∨ (q ↔ r)]
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Two propositions are equivalent if their truth tables are identical, for example exclusive or is 
equivalent to the negation of biconditional: p ⊕ q ≡ ¬(p ↔ q)

1.4  Prove the following equivalences by drawing the truth tables.
a) ¬p ∨ ¬q ≡ ¬(p ∧ q)
b) p ↔ q ≡ (p → q) ∧ (q → p)
c) p → (q → r) ≡ q → (p → r)

1.5  The difference of two propositions is defined by p − q ≡ p ∧ ¬q. Prove that 
p → q ≡ ¬(p − q).

The  contrapositive of p  → q is the proposition  ¬q  → ¬p. It is not difficult to show that an 
implication is equivalent to its contrapositive: p → q ≡ ¬q → ¬p.

1.6  For each proposition below write an equivalent statement using contrapositive.
a) If I study hard then I get good mark.
b) If it rains then it is not hot.
c) If today is not Sunday then tomorrow is not Monday.
d) If I am not lazy then I come to the lecture.

A tautology is a compound proposition whose truth table is all true, whereas a contradiction is 
all false. A contingency.is a mix of true and false.

1.7  Identify each proposition as a tautology, contradiction, or contingency.
a) (p ∧ q) → p
b) p → (p ∨ q)
c) p → (p → q)
d) p → (q → p)
e) ¬p ∧ ¬(p → q)

1.8  An  argument consists  of  two  components:  a  set  of  premises p1,  p2,  …,  pn and  a 

conclusion Q. The argument (or its conclusion) is valid if p1 ∧ p2 ∧ … ∧ pn → Q is a tautology. 
Which of the following arguments are valid?

a) p1: I failed my exam today
p2: If I studied last night then I did not fail my exam today
Q: I did not study last night

b) p1: If it snows then the school is closed
p2: It is not snowing
Q: The school is not closed

The following is a list of some common logical equivalence rules:

1) p ∧ q ≡ q ∧ p               4) ¬(¬p) ≡ p
p ∨ q ≡ q ∨ p ¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q
2) p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r             5) p → q ≡ ¬p ∨ q
p ↔ q ≡ (p → q) ∧ (q → p)

3) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ⊕ q ≡ ¬(p ↔ q)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

1.9  Prove by applying the above rules.
a) ¬(p → q) ≡ p ∧ ¬q
b) p → q ≡ ¬q → ¬p
c) p → (q → r) ≡ q → (p → r)
d) p → (q ∧ r) ≡ (p → q) ∧ (p → r)
e) p ⊕ q ≡ (p ∧ ¬q) ∨ (q ∧ ¬p)
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1.10  True or False. Prove by any method you like.
a) p → (q → r) ≡ (p → q) → r
b) p → (q ∨ r) ≡ (p → q) ∨ (p → r)
c) p ∨ (q ⊕ r) ≡ (p ∨ q) ⊕ (p ∨ r)
d) ¬(p ⊕ q) ≡ ¬p ↔ ¬q

A  CNF (Conjunctive Normal Form) is a compound proposition in the form conjunctions of 
disjunctions of propositional variables or their negations, for example (p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p 
∨ ¬q). Similarly a DNF (Disjunctive Normal Form) is disjunctions of conjunctions, such as (p ∧ 
¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r). We say that the normal form is full when no variable 
is missing in each bracket.

Theorem:  Every compound proposition is equivalent to a CNF and to a DNF.

Example: Convert [(p ↔ q) ⊕ ¬p] → ¬q to a CNF and to a DNF.
Solution: First draw the truth table. The result is  

p q … [(p ↔ q) ⊕ ¬p] → ¬q
T T … F
T F … T
F T … F
F F … T

A full CNF can be obtained by selecting the variables with false values from each 
row of the table whose result is false: (¬p ∨ ¬q) ∧ (p ∨ ¬q) and similarly a full 
DNF from the true: (p ∧ ¬q) ∨ (¬p ∧ ¬q). Both forms are equivalent to the given 
proposition: [(p ↔ q) ⊕ ¬p] → ¬q ≡ (¬p ∨ ¬q) ∧ (p ∨ ¬q) ≡ (p ∧ ¬q) ∨ (¬p ∧ ¬q).

1.11  Convert each proposition to a CNF and to a DNF.
a) ¬(p ∧ q) → p
b) (p ⊕ ¬q) ↔ (¬p ∨ q)
c) (p → q) → r
d) [(p ∧ q) → r] ⊕ [¬p ∨ (q ↔ r)]

1.12  Convert each CNF to DNF and vice versa.
a) (p ∧ q) ∨ (¬p ∧ q)
b) (p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q)
c) (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ ¬r)
d) (p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ r)
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Chapter 2
Methods of Proof

Direct Proof: 
To prove a proposition in the form p → q, we begin by assuming that p is true and 
then show that q must be true.

Example: An even number is of the form 2n where n is an integer, whereas an odd number 
is 2n + 1. Prove that if x is an odd integer then x2 is also odd.

Solution: Let p: x is odd, and q: x2 is odd. We want to prove p → q.
Start: p: x is odd
→ x = 2n + 1 for some integer n
→ x2 = (2n + 1)2

→ x2 = 4n2 + 4n + 1
→ x2 = 2(2n2 + 2n) + 1
→ x2 = 2m + 1, where m = (2n2 + 2n) is an integer
→ x2 is odd
→ q

2.1  Prove the following propositions.
a) If x is an even integer then x3 is also even.
b) If x is an odd integer then x3 is also odd.
c) If x and y are odd integers then x + y is even.
d) If x and y are odd integers then xy is also odd.
e) If x is an odd integer then x2 − 3x is even.

Proof by Contrapositive:
To prove a proposition in  the form p  → q,  we may instead prove its contra-
positive: ¬q → ¬p. This works because p → q ≡ ¬q → ¬p.

Example: Prove that if x2 is odd then x must be odd.
Solution: Let p: x2 is odd, and q: x is odd. We will prove p → q by proving ¬q → ¬p.

Start: ¬q: x is even
→ x = 2n for some integer n
→ x2 = (2n) 2

→ x2 = 4n2

→ x2 = 2(2n2)
→ x2 = 2m, where m = 2n2 is an integer
→ x2 is even
→ ¬p

2.2  Prove the following propositions.
a) If x2 is even then x must be even.
b) If x3 is even then x must be even.
c) If x2 − 2x is even then x must be even.
d) If x3 − 4x + 2 is odd then x must be odd.

Proving Equivalence:
To prove a proposition in the form p ↔ q, we prove its equivalence:
p ↔ q ≡ (p → q ) ∧ (q → p).

Example: Prove that x2 is odd if and only if x is odd.
Solution: Let p: x2 is odd, and q: x is odd. We will prove p ↔ q by proving p → q and q → p

Step 1) Prove p → q ... (Like Example 2)
Step 2) Prove q → p ... (Like Example 1)
Proof is complete.
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2.3  Prove the following propositions.
a) x2 is even if and only if x is even.
b) x3 is even if and only if x is even.
c) x2 − 2x is even if and only if x is even.
d) x3 − 4x + 2 is odd if and only if x is odd.

A  predicate is a propositional function such as P(x):  x + 2 = 5. For each value of x,  P(x)  
becomes a proposition, for instance, P(3): 3 + 2 = 5 is true and P(2): 2 + 2 = 5 is false.

2.4  Let P(x): x2 < x.
a) What is the value of P(1)?
b) What is the value of P(2)?
c) For which x is the value of P(x) true?

2.5  Let P(x,y): x2 + y2 = (x + y)2. Find the values of the following propositions.
a) P(0,1)
b) P(0,0)
c) P(1,1)
d) For which (x,y) is the value of P(x,y) true?

A predicate can also be made a proposition by adding a quantifier such as ∃ (there is / there 
exists / there is at least one) and ∀ (for all / for any /for each).

Example: Let P(x): x + 2 = 5 .
1) ∃x P(x) means “there is at least one x such that x + 2 = 5” which is true.
2) ∀x P(x) means “for all x, x + 2 = 5” which is false.

2.6  Let P(x): x < 2x.
a) What is the value of ∃x P(x)?
b) What is the value of ∀x P(x)?

2.7  Let P(x,y): x2 + y2 = (x + y)2. Find the values of the following propositions.
a) ∃x ∃y P(x,y)
b) ∀x ∀y P(x,y)
c) ∃x ∀y P(x,y)
d) ∀x ∃y P(x,y)
e) ∃y ∀x P(x,y)

2.8  Repeat Problem 1.17 using the following predicates.
a) P(x,y): x2 + y2 > 0
b) P(x,y): x2 + y2 ≥ 0
c) P(x,y): x2 − y2 ≥ 0

Mathematical Induction: 
To  prove  a  proposition  in  the  form  ∀n P(n)  where  n  is  a  positive  integer,  it 
suffices to prove the following two propositions.

1) P(1)
2) P(n) → P(n+1)

Example: Prove the following formula for all positive integers n.
1 + 3 + 5 + 7 + 9 + … + (2n − 1) = n2

Solution: Let P(n): 1 + 3 + 5 + 7 + 9 + … + (2n − 1) = n2

We shall prove ∀n P(n) in two steps:

1)  P(1): 1 = 12 so this proposition is true.
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2)  P(n): 1 + 3 + 5 + 7 + 9 + … + (2n − 1) = n2

→  1 + 3 + 5 + 7 + 9 + … + (2n − 1) + (2n + 1) = n2 + (2n + 1)
→  1 + 3 + 5 + 7 + 9 + … + (2n − 1) + (2n + 1) = (n + 1)2

→  P(n+1)

2.9  Prove the following formulas for all positive integers n.
a) 1 + 2 + 3 + 4 + 5 + … + n = n(n + 1) ÷ 2
b) 2 + 4 + 6 + 8 + 10 + … + 2n = n2 + n
c) 1 + 2 + 4 + 8 + 16 + … + 2n−1 = 2n − 1
d) 1 + 3 + 9 + 27 + 81 + … + 3n−1 = (3n − 1) ÷ 2
e) 1 + 4 + 9 + 16 + 25 + … + n2 = n(n + 1)(2n + 1) ÷ 6

2.10  Prove the following propositions.
a) n < 2n ∀ n ≥ 1
b) 2n < n! ∀ n ≥ 4
c) 3n < n! ∀ n ≥ 7
d) 2n > n2 ∀ n ≥ 5
e) n! < nn ∀ n ≥ 2
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Chapter 3
The Integers

In the binary number system we use only 0 and 1 to count. The positive integers go like this:  
1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, …

Note that the digits of a decimal number represent powers of 10, for example 59012 = 5 × 104 

+ 9 × 103 + 0  × 102 + 1 × 101 + 2  × 100. Similarly, the digits of a binary number represent 
powers of 2.

Examples: 1)   11012 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 8 + 4 + 0 + 1 = 1310

2)   1011102 = 21 + 22 + 23 + 25 = 2 + 4 + 8 + 32 = 4610

3.1  Convert these binary numbers to decimal.
a) 101010
b) 101001000
c) 10110111
d) 1000001

Example: Convert the number 54 to binary.
Solution: To find the appropriate powers of 2, divide this number by 2 repeatedly.

54 ÷ 2 = 27 remain 0
27 ÷ 2 = 13 remain 1
13 ÷ 2 = 6 remain 1
6 ÷ 2 = 3 remain 0
3 ÷ 2 = 1 remain 1
1 ÷ 2 = 0 remain 1
The answer is these remainders from the last one up: 110110

3.2  Convert these decimal numbers to binary.
a) 37
b) 99
c) 500
d) 999

The hexadecimal number system uses 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.  
Again, the digits represent powers of the base, in this case 16. 

Example: 1A5E16  = 1 × 163 + 10 × 162 + 5 × 161 + 14 × 160 = 4096+2560+80+14 = 675010

3.3  Convert these hexadecimal numbers to decimal.
a) 5FE
b) BCD
c) A0A0
d) 11111

3.4  Convert the decimal numbers in Problem 3.2 to hexadecimal.

Because 16 = 24, every 1 hexadecimal digit corresponds to 4 binary digits. 

Examples: 1)  7BF816 = 0111 1011 1111 1000 = 1111011111110002
2)  11110111111000101101002 = 0011 1101 1111 1000 1011 0100 = 3DF8B416

The following table is useful when converting between binary and hexadecimal.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
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3.5  Convert the hexadecimal numbers in Problem 3.3 to binary.

3.6  Convert the binary numbers in Problem 3.1 to hexadecimal.

3.7  Convert the decimal numbers in Problem 3.2 to octal (base 8).

3.8  A real number between 0 and 1 is represented by negative powers of the base. For 
example, in decimal 0.125 = 1 × 10−1 + 2 × 10−2 + 5 × 10−3. Convert the following numbers to 
decimal.

a) 0.11012
b) 0.0000012
c) 111.1112
d) 0.A816
e) 111.11116

3.9  Convert these decimal numbers to binary and then to hexadecimal.
a) 0.03125
b) 0.765625
c) 5/8
d) 1/3
e) 25.25

The  floor function  x of a real number x is the greatest integer n  ≤ x whereas the  ceiling 
function x is the smallest integer n ≥ x. 

Examples: 1)   1.99 = 1 1.99 = 2
2) 7.01 = 7 7.01 = 8
3) 5 = 5 5 = 5
4) −½ = −1 −½ = 0

For two integers m and n > 0 define the modulo operation m mod n = m − m/n × n which is 
the same as the remainder upon dividing m by n.

Example: Evaluate 217 mod 5.
Solution: 217 ÷ 5 = 43.4 hence 217 mod 5 = 217 − (43 × 5) = 2.

Equivalently, 217 = (43) × 5 + (2) hence 217 mod 5 = 2.

3.10  Evaluate the following.
a) 123 mod 3
b) 2000 mod 7
c) 25 mod 11
d) 11 mod 25

In the special case where m mod n = 0 we say that m is a multiple of n and that n is a divisor 
of m.

Examples: a)  3 is a divisor of 12 and 21 but not of 32
b)  even numbers are multiples of 2
c)  0 is a multiple of all integers except itself

3.11  Prove that if a mod n = b mod n then n is a divisor of a − b.

3.12  Prove by induction for all positive integers n.
a) 22n − 1 is a multiple of 3
b) 7 is a divisor of 23n − 1
c) n3 + 2n is a multiple of 3
d) n5 − n mod 5 = 0
e) 2n+2 + 32n+1 is a multiple of 7
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The GCD (greatest common divisor) of two integers is the biggest integer that is a divisor of 
both. Similarly the LCM (least common multiple) is the smallest integer a multiple of both. 

Examples: GCD (12, 16) = 4 since 4 is a divisor of 12 and 16 and is the biggest of such.
LCM (12, 16) = 48 since 48 is a multiple of 12 and 16 and the smallest of such.

The Euclidean algorithm gives an efficient way to compute GCD by iteration:

GCD (m, n) := GCD (n, m mod n)

Example: Find GCD (278, 144) using the algorithm.
Solution: GCD (278, 144)

= GCD (144, 134) because 278 mod 144 = 134
= GCD (134, 10) because 144 mod 134 = 10
= GCD (10, 4) because 134 mod 10 = 4
= GCD (4, 2) because 10 mod 4 = 2
= GCD (2, 0) because 4 mod 2 = 0
= 2

The sequence of remainders consists of
278, 144, 134, 10, 4, 2, 0.

3.13  Find the GCD of each pair using the Euclidean algorithm.
a) 275 and 115
b) 999 and 123
c) 456 and 144
d) 725 and 1000

Theorem: CGD (m, n) × LCM (m, n) = m × n

3.14  Find the LCM of each pair in Problem 3.13.

A sequence is a function f(n) defined over the (non-negative) integers, hence can be ordered 
f(0), f(1), f(2), f(3), … 

Examples: 1)   f(n) = n2 is the sequence 0, 1, 4, 9, 16, 25, 36, …
2)   f(n) = 2n + 1 is the sequence 1, 3, 5, 7, 9, 11, 13, …

 A sequence is recursive if f(n) depends on f(0), f(1), … , f(n−1).

Example: The  Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,  … is recursive with a 
recurrence relation given by f(n) = f(n−1) + f(n−2) for all n ≥ 2.

3.15  Find a recurrence relation for each given sequence.
a) 1, 3, 5, 9, 17, 31, 57, 105, …
b) 7, 17, 27, 37, 47, 57, 67, …
c) 1, 1, 2, 6, 24, 120, 720, …
d) 2, 4, 5, 7, 9, 12, 16, 22, …

A recurrence relation of the form f(n) = A f(n−1) + B f(n−2) can be expressed explicitly in one 
of two ways, depending whether the quadratic equation x2 − Ax − B = 0 has one solution or 
two, respectively:

If there is only one solution (x) then
1) f(n) = C xn + D nxn

If there are two solutions (x1 and x2) then
2) f(n) = C x1

n + D x2
n
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Example: Find an explicit formula for the sequence given by
f(0) = 4, f(1) = 7, f(n) = f(n−1) + 6f(n−2) for all n ≥ 2.

Solution: The equation x2 − x − 6 = 0 has two solutions x1 = −2 and x2 = 3 (How?)
Hence the explicit formula is f(n) = C(−2)n + D(3)n

To find C and D substitute the values of f(0) and f(1):
f(0) = 4 = C + D
f(1) = 7 = −2C + 3D
The solution is C = 1 and D = 3 (How?) therefore f(n) = (−2)n + 3n+1.

3.16  Find an explicit formula for each given sequence.
a) f(0) = 1, f(1) = 8, f(n) = f(n−1) + 2f(n−2)
b) f(0) = 1, f(1) = 3, f(n) = 4f(n−1) − 4f(n−2)
c) a0 = 1, a1 = 2, an = 2an−1 + 3an−2

d) a0 = 1, a1 = 4, an = 2an−1 − an−2

3.17  Find an explicit formula for the Fibonacci sequence. 

3.18  Prove that GCD [f(n), f(n+1)] = 1 for all n ≥ 0 in the Fibonacci sequence.
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Chapter 4
Sets and Counting

A set is a collection of objects called the elements of the set. The ordering of the elements is 
not important and repetition of elements is ignored, for example {1, 3, 1, 2, 2, 1} = {1, 2, 3}. A 
set may also be empty and it is denoted by φ or { }. If x is an element of the set A then we write 
x ∈ A, otherwise x ∉ A.

For any two sets A and B, define the following set operations.

1) The union A ∪ B = {x | x ∈ A ∨ x ∈ B}
2) The intersection A ∩ B = {x | x ∈ A ∧ x ∈ B}
3) The difference A − B = {x | x ∈ A ∧ x ∉ B}
4) The symmetric difference A ⊕ B = {x | x ∈ A ⊕ x ∈ B}

These set operations can be illustrated using Venn diagrams:

Example: If A = {1, 2, 3, 4, 5} and B = {0, 2, 4, 6}  then
A ∪ B = {0, 1, 2, 3, 4, 5, 6}
A ∩ B = {2, 4}
A − B = {1, 3, 5}
B − A = {0, 6}
A ⊕ B = {0, 1, 3, 5, 6}

4.1  Let A = {1, 2, 3, 4, 5}, B = {0, 2, 4, 6} and C = {1, 3, 5}. Find the following set.
a) (A ∪ C) ⊕ (A ∩ C)
b) A ⊕ (B ∪ C)
c) (A ⊕ B) − (A ⊕ C) 
d) (A − B) ⊕ (A − C)

Define the complement of a set A to be Ac = {x | x ∉ A}. The following set identities are the 
analog of logical equivalences.

(Ac)c = A A − B = A ∩ Bc

A ∪ B = B ∪ A A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ B = B ∩ A A ∩ (B ∩ C) = (A ∩ B) ∩ C

(A ∪ B)c = Ac ∩ Bc A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(A ∩ B)c = Ac ∪ Bc A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

4.2  True or False? Use Venn diagrams to verify each one.
a) (A ∪ B) − (A ∩ B) = A ⊕ B
b) (A − B) ∪ (B − A) = A ⊕ B
c) (A ⊕ B) − B = A
d) (A ⊕ B) ⊕ B = A
e) A ⊕ A = A − A

A set S is a subset of a set A, written S ⊆ A, if x ∈ S → x ∈ A. For example A = {1, 2}  has a 
total of 4 subsets: {1}, {2},  φ, and A itself. The power set of a set A, written P(A), is the set 
whose elements are all  the subsets of A. So for this example P(A) = {φ,  {1},  {2},  A}.  The 
cardinality of a set A is the number of elements in A, denoted by |A|.
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Theorem:  If |A| = n then |P(A)| = 2n  (Every set with n elements has 2n subsets.)

4.3  Find P(A) and |P(A)| for each set A to verify the above theorem.
a) A = {1, 2, 3}
b) A= {1, 3, 5, 7}
c) A = φ
d) A = {φ, {1}}

4.4  Prove the above theorem by mathematical induction.

The cross product of A and B is the set A × B = {(a, b) | a ∈ A and b ∈ B}.

Example: If A = {1, 2, 3} and B = {x, y} then
A × B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}
B × A = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)} 

Theorem: If |A| = m and |B| = n then |A × B| = m × n 

4.5  Let A = {2, 3, 5, 7} and B = {1, 2, 4}. Evaluate each cardinality.
a) |P(A ∪ B)|
b) |P(A ∩ B)|
c) |P(A − B)|
d) |P(A ⊕ B)|
e) |P(A × B)|

Theorem: If there are k sets with n elements in all then one of the sets must contain at least 
n/k elements.  (The Pigeonhole Principle)

Example: The University has 8 faculties. Given any group of 9 students, at least 9/8 = 2 of 
them must belong in the same faculty. And with 42 students at least 42/8 = 6 
must belong in the same faculty

4.6  What is the minimum number of students to ensure the following is true?
a) 13 of them must be in the same faculty
b) 2 of them have their birthdays in the same month
c) 5 of them have their birthdays in the same month
d) 5 of them have the same birthdays

Theorem: |A ∪ B| = |A| + |B| − |A ∩ B|  (The Inclusion-Exclusion Principle)

Example:  How many positive integers ≤ 100 are multiples of 2 or multiples of 3?
Solution:  A = <2> = {2 , 4 , 6 , … , 100}, |A| = 100/2 = 50 

B = <3> = {3 , 6 , 9, … , 99}, |B| = 100/3 = 33
A ∩ B = <LCM(2,3)> = <6> = {6, 12, 18 , … , 96}, |A ∩ B| = 100/6 = 16
|A ∪ B| = 50 + 33 − 16 = 67

4.7  How many positive integers ≤ 200 are multiples of
a) 3 or 5?
b) 4 or 6?
c) not multiples of 2 or 17?
d) not multiples of 12 or 16?

Theorem: |A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|

Example:  How many positive integers ≤ 100 are multiples of 4, 5, or 6?
Solution: A = <4>, |A| = 100/4 = 25 

B = <5>, |B| = 100/5 = 20
C = <6>, |C| = 100/6 = 16
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A ∩ B = <LCM(4,5)> = <20>, |A ∩ B| = 100/20 = 5
A ∩ C = <LCM(4,6)> = <12>, |A ∩ C| = 100/12 = 8
B ∩ C = <LCM(5,6)> = <30>, |B ∩ C| = 100/30 = 3
A ∩ B ∩ C = <LCM(4,5,6)> = <60>, |A ∩ B ∩ C| = 100/60 = 1
|A ∪ B ∪ C| = 25 + 20 + 16 − 5 − 8 − 3 + 1 = 46

4.8  How many positive integers ≤ 1000 are multiples of
a) 2, 3, or 5?
b) 4, 6, or 20?
c) not multiples of 4, 6, or 20?
d) not multiples of 8, 12, or 20?

4.9  Generalize the above theorem for four sets: |A ∪ B ∪ C ∪ D|

A combination of elements is the set containing those elements, whereas a permutation is like 
a  set  but  with  specific  ordering  of  the  elements.  For  example  there  are  6  different 
permutations of the elements A, B, C, namely ABC, ACB, BAC, BCA, CAB, and CBA.

Theorem: There are n! different permutations of n elements.

4.10  How many different permutations of the alphabet {A, B, C, … , Z} which
a) contain the word CAR or BYTE?
b) contain the word NO or YES or WHAT?
c) do not contain the word AND or OR or XOR?
d) do not contain the word BY or DNA or COMPUTER?

4.11  A  multiset is like a set but with repetition of elements allowed.  How many different 
permutations are there of the elements taken from

a) the multiset {A, B, B, C}?
b) the word DISCRETE?
c) the word MATHEMATICS?
d) the word UNUSUAL?

4.12  A string over a set  Σ is a sequence of elements of  Σ. For example over Σ = {0, 1} the 
sequence 1011011011101… is a string, whether or not the length is finite. Let Σn denote the 
set of all strings of length n over Σ.

a) Find Σ3 for Σ = {0, 1}.
b) Find Σ2 for Σ = {a, b, c}.
c) If |Σ| = m, what is |Σn|?

C(n, k) denotes the number of subsets which contain k elements from a set with n elements. 
For example C(3, 2) = 3 because there are 3 subsets of {a, b, c} which have 2 elements, 
namely {a, b}, {a, c}, and {b, c}.

Theorem: C(n, k) =       n!      .
                k! (n − k)!

Example: If |S| = 10 how many subsets of S are there that contain 8 elements?
Solution: C(10, 8) = 10! / (8! 2!) = (1 2 3 4 5 6 7 8 9 10) / (1 2 3 4 5 6 7 8 1 2 ) = 45.

4.13  Let |S| = 7. How many subsets does S have which contain 
a) 4 elements?
b) 3 elements?
c) 7 elements?
d) more than 5 elements?
e) at least 1 element?

4.14  Evaluate C(n, 0) + C(n, 1) + C(n, 2) + … + C(n, n).
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Theorem: There are C(n+k−1, k) non-negative integer solutions of the equation 
x1 + x2 + x3 + … + xn = k

Example: How many non-negative integer solutions of a + b + c = 8?
Solution: C(3+8−1, 8) = C(10,8) = 45.

4.15  How many integer solutions of x + y + z = 11 with each given condition?
a) x, y, z are non-negative
b) x, y, z are positive
c) x ≥ 1, y ≥ 2, and z ≥ 3
d) x ≤ 3, y ≤ 4, and z ≤ 6
e) x ≤ 5, y ≤ 2, and z ≤ 7

The probability of an event (finite set) A under the assumption that each element is equally 
likely, is given by p(A) = |A| / |S|, where S is the sample space of all possible events.

Example: A pair of dice is rolled. What is the probability that the sum is 7?
Solution: The sample space is S = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),

(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2).(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}. The event
A = {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}. Hence p(A) = 6/36 = 1/6.

4.16  If two dice are rolled, what is the probability of each event below?
a) The sum is 9
b) Two equal numbers
c) At least one 6
d) The sum is at least 9

4.17  In a group of 5 men and 5 women, four people will be chosen. Find the probability of 
each event given below.

a) All four are women
b) Equal number of men and women
c) At least two men
d) At least one man and one woman
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Chapter 5
Binary Relations

Any subset of A × A is a binary relation on the set A.

Examples: The following are some, but not all, binary relations on {1, 2, 3}.

1) {(1, 2), (2, 3)}
2) {(2, 2)}
3) {(1, 2), (1, 3), (2, 1), (3, 3)} 
4) φ

5.1  If |A| = n how many different relations on A are there?

If R ⊆ A × A is a relation then the inverse R−1 = {(b, a) | (a, b) ∈ R} is also a relation on A. And 
if S ⊆ A × A is another relation then the composition of R and S is a relation on A defined by

S ° R = {(a, c) | (a, b) ∈ R and (b, c) ∈ S}. 

Example: Let A = {1, 2, 3, 4}, R = {(1, 2), (2, 4), (3, 1)}, and S = {(1, 1), (2, 3), (4, 3)}. Then
R−1 = {(2, 1), (4, 2), (1, 3)}
S−1 = {(1, 1), (3, 2), (3, 4)}
S ° R = {(1, 3), (2, 3), (3, 1)}
R ° S = {(1, 2), (2, 1), (4, 1)}

In the case R ⊆ A × A define R2 = R ° R and R3 = R ° R ° R, ... , also R−2 = R−1 ° R−1 etc.

5.2  Let A = {1, 2, 3, 4} and R = {(1, 2), (2, 1), (2, 4), (3, 1), (3, 4)} ⊆ A × A.
a) Find R2

b) Find R3

c) Find R−2

d) Find (R2)−1

Certain properties of a relation R ⊆ A × A are important:

1) reflexive: (a, a) ∈ R ∀ a ∈ A
2) symmetric: (a, b) ∈ R → (b, a) ∈ R ∀ a ∧ b ∈ A
3) anti-symmetric: (a, b) ∈ R → (b, a) ∉ R ∀ a ≠ b ∈ A
4) transitive: (a, b) ∧ (b, c) ∈ R → (a, c) ∈ R ∀ a, b, c ∈ A

Note that R is symmetric when R = R−1 and anti-symmetric when R ∩ R−1 = φ or contains only 
elements of the form (a, a), whereas R is transitive when R2 ⊆ R. 

Example: Let A = {1, 2, 3} and  consider three relations on A:
R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}
R2 = {(1, 1), (1, 3), (2, 2), (3, 2)}
R3 = {(1, 2), (1, 3), (2, 3)}
For R1 : reflexive (T) symmetric (T) anti-symmetric (F) transitive (T)
For R2 : reflexive (F) symmetric (F) anti-symmetric (T) transitive (F)
For R3 : reflexive (F) symmetric (F) anti-symmetric (T) transitive (T)

5.3  Let A = {1, 2, 3, 4}. Find the truth values of the four propositions for each R ⊆ A × A.
a) R = {(a, b) | a ≤ b}
b) R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}
c) R = {(1, 1), (1, 3), (2, 1), (2, 2), (2, 4)}
d) R = {(a, b) | a + b ≥ 5}
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5.4  Let A = {1, 2, 3, 4}. Give any example of a relation R ⊆ A × A which is
a) reflexive (T) symmetric (T) anti-symmetric (F) transitive (F)
b) reflexive (F) symmetric (T) anti-symmetric (F) transitive (F)
c) reflexive (F) symmetric (T) anti-symmetric (F) transitive (T)
d) reflexive (F) symmetric (F) anti-symmetric (F) transitive (F)
e) reflexive (T) symmetric (T) anti-symmetric (T) transitive (T)

A relation R  ⊆ A  × A can be represented by a  digraph in which each element of   A  is 
represented by a vertex and each element (a, b) of R is represented by an edge with direction 
from a to b. In the case a = b the edge is a loop.

Example: A = {1, 2, 3, 4} and R = {(1, 4), (2, 1), (2, 2), (4, 1), (4, 2), (4, 3)}.

5.5  Draw the digraph for each of the relations in Problem 5.3.

5.6  What characterizes the digraph of a relation with each of the following properties?
a) reflexive
b) anti-reflexive [meaning that (a, a) ∉ R ∀ a ∈ A]
c) symmetric
d) anti-symmetric
e) transitive

R  ⊆ A  × A is an  equivalence relation if it  is reflexive, symmetric, and transitive. If R is an 
equivalence relation then A is partitioned into subsets such that in each subset every two 
vertices are connected by an edge. These subsets are the equivalence classes of A under the 
relation R.

Example: The following digraph shows that R is an equivalence relation. (Why?)
The equivalence classes are {1, 4}, {2}, and {3, 5, 6}. (Why?)

5.7  Prove that R is an equivalence relation and then find the equivalence classes.
a) A = {0, 1, 2, 3, 4, 5, 6} and R = {(a, b) | a + b is even}
b) A = {1, 2, 3, 4} and R = {(a, b) | a = b}
c) A = {0, 5, 8, 9, 10, 11} and R = {(a, b) | a − b is a multiple of 3}
d) A = {1, 2, 3, 6, 7, 11} and R ={(a, b) | a mod 5 = b mod 5}
e) A = {1, 9, 21, 44, 50, 99, 101} and R ={(a, b) | (a − b) mod 10 = 0}  

R ⊆ A × A is a partial order relation if it is reflexive, anti-symmetric, and transitive. In this case 
the digraph of R can be simplified into a Hasse diagram after these 4 steps:

1) Do not draw loops.
2) Do not draw (a, c) whenever there are (a, b) and (b, c).
3) Redraw the remaining graph so that all edges point upward.
4) Do not draw the directions.
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Example: The following digraph shows that R is a partial order relation. (Why?) 
The 4 steps above lead to the Hasse diagram of R.

5.8  Prove that R is a partial order relation and then draw the Hasse diagram.
a) A = {1, 2, 3, 4} and R = {(a, b) | a ≤ b}
b) A = {1, 2, 6, 12, 24} and R = {(a, b) | a is a divisor of b}
c) A = {1, 2, 6, 10, 20, 30} and R = {(a, b) | b mod a = 0}
d) A = {1, 5, 7, 10, 35, 70} and R = {(a, b) | b mod a = 0}

R ⊆ A × A is a total order relation if it is a partial order relation in which every two vertices are 
connected by an edge. The partial order relation in the previous example is not a total order 
because there is no edge between 2 and 4. Moreover the Hasse diagram of a total order 
relation can always be drawn as a vertical line.

5.9  Which ones of the partial order relations in Problem 5.8 are total order?

If A = {1, 2, 3, … , n} then a binary relation R ⊆ A × A can be represented by a zero-one matrix 
(mij) of size n×n where mij = 0 if (i, j) ∉ R and mij = 1 if (i, j) ∈ R.

Example: A = {1, 2, 3}. Find the zero-one matrix of R = {(1,1), (1,3), (2,1), (3,2), (3,3)}.

Solution:
















110
001
101

5.10  Represent the relations given in Problem 5.3 using zero-one matrices.

5.11  Convert these zero-one matrices to digraphs.

a)  
















010
100
101

   b)  
















001
101
000

   c)  


















0000
1000
0010
0110

   d)  


















0010
0001
0100
1000

The transitive closure of R ⊆ A × A is the smallest transitive relation containing R. 

Theorem: The transitive closure of R is given by R ∪ R2 ∪ R3 ∪ … ∪ Rn where n = |A|.

5.12  Let A = {1, 2, 3, 4}. Use the above theorem to find the transitive closure of R ⊆ A × A. 
a) R = {(1, 2), (2, 1), (2, 3), (3, 4)}
b) R = {(1, 1), (1, 2), (2, 1), (4, 3)}
c) R = {(1, 1), (1, 4), (2, 1), (2, 2), (3, 3), (4, 4)}
d) R = {(1, 4), (2, 1), (2, 4), (3, 2), (3, 4), (4, 3)}

5.13  Find the zero-one matrix of the transitive closure for each relation in Problem 5.11.

5.14  Given R and its zero-one matrix M, discover a way to compute M2, the corresponding 
matrix of R2, then redo Problem 5.13 using only matrices.

5.15  Discuss the obvious definitions of reflexive closure and symmetric closure and how we 
might find them.
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Chapter 6
Graph Theory

A graph consists of two components: a set of vertices and a multiset of edges and loops. 

Example: G = {a, b, c, d} ∪ {ac, ac, ad, cc, cd} which we represent graphically as follows.

There are two matrical representations of a graph G with m vertices and n edges: 

1) The adjacency matrix of G is an m×m matrix defined by mij = the number of 
edges between vertex i and vertex j. 

2) The  incidence matrix of G is an m×n matrix defined by mij = 1 if edge j is 
incidence on vertex i and mij = 0 otherwise.

Example: The adjacency matrix and the incidence matrix of G above are respectively



















0101
1102
0000
1200

   
and   



















10100
11011
00000
00111

6.1  Convert these adjacency matrices to incidence matrices.

a)   








02
21

   
b)   

















103
010
301

   c)   



















0010
0221
1201
0110

6.2  Convert these incidence matrices to adjacency matrices.

a)   
















11100
01111
00001

   b)   



















110010
101001
010101
000110

   c)   



















10001000
11110011
00001100
00000011

A graph is simple if it has neither loops nor multiple edges. A simple graph in which every two 
vertices are connected by an edge is called a  complete graph. Let  Kn denote the complete 
graph with n vertices, as pictured below for n = 1, 2, 3, 4, 5.

A  complete bipartite graph  is  a  simple  graph whose vertices can  be partitioned  into  two 
subsets such that two vertices are connected if and only if they belong to different subsets. Let  
Km,n denote the complete bipartite graph with the partition into m and n vertices:
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6.3  Write the adjacency matrix and the incidence matrix for K4 and for K3,1 and K2,2.

The degree of a vertex is the number of edges incidence on it, where a loop counts as two 
edges. The degree of a graph is the sum of all the degrees of its vertices. In the example G =  
{a, b, c, d} ∪ {ac, ac, ad, cc, cd} given earlier, the degree of G = deg(a) + deg(b) + deg(c) + 
deg(d) = 3 + 0 + 5 + 2 = 10.

Theorem: The degree of any graph is twice its number of edges.

6.4  Find the formula for the number of edges and the degree of Kn and for Km,n.

A tree is a connected graph whose number of edges is one less than the number of vertices.

Examples:

6.5  For which n is Kn a tree? How about Km,n?

A spanning tree of a graph G is a tree subgraph of G containing all the vertices of G. In the 
example below (a) is not a spanning tree of G because it lacks one vertex of G, (b) is not  
because it is not a tree, (c) is not because it is not a subgraph of G, (d) is a spanning tree of G.

A graph is  weighted if each edge is associated with a numerical value. A minimal spanning 
tree of a weighted graph is one with smallest possible total value. One way to obtain a minimal 
spanning tree from a weighted graph is by repeatedly removing the edge with largest value, 
provided that this action does not disconnect the graph, until what is left forms a tree.

6.6  Find a minimal spanning tree for each weighted graph below.

A vertex in a tree can be selected as the root, which is placed topmost and from which every 
edge is directed downward. In this case a vertex one-edge down is called a child of the one 
above it. A labeled binary tree is a rooted tree in which every vertex has at most two children 
which are distinguished as a left and/or a right child, if any.

Examples:

There are 3 common algorithms for traversing the vertices of a labeled binary tree:
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1) pre-order traversal: ROOT → LEFT → RIGHT
2) post-order traversal: LEFT → RIGHT → ROOT
3) in-order traversal: LEFT → ROOT → RIGHT

Example: Apply these algorithms to the labeled binary tree (a) in the above example.
pre-order: 1, 2, 4, 5, 3, 6, 7
post-order: 4, 5, 2, 6, 7, 3, 1
in-order: 4, 2, 5, 1, 6, 3, 7

6.7  Complete the example for (b), (c), and (d) using the 3 algorithms.

Labeled binary trees can be used to represent mathematical expressions in accordance with 
the in-order traversal. For example [5 × (−3)] + [8 ÷ (9 − 7)] :

6.8  Represent these expressions using labeled binary trees.
a) (x × y) + [(y ÷ x) − (x + y)^3]
b) (A ∪ B) ⊕ [(A ∩ C) ∪ (B − C)]
c) (p → ¬q) ↔ [¬p ∧ (q ⊕ r)]

An Euler path in a graph is a continuous walk through all its edges without repetition. If the  
walk ends at the same starting vertex, we call it an Euler circuit.

6.9  Are these graphs Euler paths/circuits?

Theorem: A connected graph is an Euler circuit if and only if the degree of each vertex is 
even. Otherwise it is an Euler path if and only if exactly two vertices have odd  
degrees.

6.10  For which n is Kn an Euler path/circuit? How about Km,n?

The Chinese postman problem asks for a circuit in a weighted graph that has a least weight. If 
there is, of course, an Euler circuit would be an ideal solution; else the walk would necessarily  
repeat some edges.

Example: Solve the Chinese postman problem for the following graph.

Solution: There are four vertices of odd degree, which we label A,B,C,D, above. If we build 
two extra edges to connect them in pairs, the new graph would be Euler circuit. 
Each extra edge is actually a walk through the existing edges, so we study all the 
possibilities of pairing up the four vertices as follows.
{A,B} + {C,D} = 6 + 5 = 11
{A,C} + {B,D} = 9 + (4 + 5) = 18
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{A,D} + {B,C} = (2 + 3) + 4 = 9
The minimal solution involves walking through all the edges (of weight 45) plus 
the (least cost) repetition from A to D (of weight 5) and from B to C (of weight 4). 
The total cost will be 45 + 9 = 54.

6.11  Solve the Chinese postman problems for the weighted graphs below.

A graph is planar if it can be drawn without crossing any edge. 

Example: K4 is planar.

6.12  Are these graphs planar ?
a) K5
b) K2,2
c) K2,3
d) K3,3

This particular drawing of a planar graph is called a  map, and it partitions the plane into a 
number of regions. For example the map of K4 partitions the plane into 3 interior regions. The 
chromatic number of a map is the minimum number of colors needed to color the interior 
regions of the map such that regions which share an edge are of different colors.

6.13  Find the chromatic numbers of these maps.

Theorem: The chromatic number of any map is at most 4.  (The Four-Color Theorem)

6.14  Draw a map with 4 interior regions and with chromatic number equals 4.

The dual graph G of a map M is defined as follow.

1) The vertices of G are the interior regions of M
2) The edges of G are the boundaries between two regions of M

Example: The dual graph of K4 is K3 (Verify it!)

6.15  Draw the dual graphs for the maps given in Problem 6.13, then find their chromatic 
numbers again by coloring the vertices of the dual graphs!
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Appendix 1
Personalized Projects

1. Convert your university number to (a) binary (b) hexadecimal and (c) octal.

2. Use the Euclidean algorithm to compute GCD (m, n) where m is your university number 
and n is the same number with the digits reversed from right to left. 

3. How many different  permutations can be formed using all  the digits in your university 
number?

4. The set A consists of the digits in your university number and R = {(a, b) | a mod 3 = 
b mod 3}. Show that R is an equivalence relation and then find the equivalence classes.

5. The set A consists of the digits in your university number and R = {(a, b) | b mod a = 0}.  
Show that R ∪ {(0, 0)} is a partial order relation and then draw the Hasse diagram.

6. Write  your  university  number  in  binary  and then  enter  the  digits  into  a  5×5 zero-one 
matrix, starting from the upper left corner. Ignore any leftover digits.

a) Find the elements of R and draw its digraph.
b) Is R reflexive, symmetric, anti-symmetric, or transitive?
c) Find the matrix for the transitive closure of R.

Appendix 2
Selected Answers

1.1   (a) Amman is in Jordan and 2 + 2 ≠ 5 (b) T (c) Amman is not in Jordan or 2 + 2 ≠ 5 (d) T
1.2   (a) q ↔ ¬r (b) p ⊕ ¬p (c) ¬r → ¬q (d) ¬(p ∨ r) (e) r → (q ∨ p)
1.3   (a) F T T T (b) T T F F (c) T T F T (d) T F T T T F T F (e) F F T F F F F F
1.6   (a) If I do not get good mark then I do not study hard (b) If it is hot then it does not rain
1.7   (a) tautology (b) tautology (c) contingency (d) tautology (e) contradiction
1.8   (a) valid (b) invalid
1.10 (a) F (b) T (c) F (d) T
1.11 (a) (p ∨ ¬q) ∧ (p ∨ q) ≡ (p ∧ q) ∨ (p ∧ ¬q) (b) (p ∨ ¬q) ≡ (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ ¬q)
1.12 (a) (¬p ∨ q) ∧ (p ∨ q) (b) (p ∧ ¬q) (c) (¬p∨¬q∨¬r) ∧ (¬p∨¬q∨r) ∧ (¬p∨q∨¬r) ∧ (p∨¬q∨¬r)

2.4   (a) F (b) F (c) 0 < x < 1
2.5   (a) T (b) T (c) F (d) (x, 0) ∨ (0, y)
2.6   (a) T (b) F
2.7   (a) T (b ) F (c) T (d) T (e) T

3.1   (a) 42 (b) 328 (c) 183 (d) 65
3.2   (a) 100101 (b) 1100011 (c) 111110100 (d) 1111100111
3.3   (a) 1534 (b) 3021 (c) 41120 (d) 69905
3.4   (a) 25 (b) 63 (c) 1F4 (d) 3E7
3.5   (a) 10111111110 (b) 101111001101 (c) 1010000010100000 (d) 10001000100010001
3.6   (a) 2A (b) 148 (c) B7 (d) 41
3.7   (a) 45 (b) 143 (c) 764 (d) 1747
3.8   (a) 0.8125 (b) 0.015625 (c) 7.875 (d) 0.65625 (e) 273.06665039062
3.9   (a) 0.00001 = 0.08 (b) 0.110001 = 0.C4 (c) 0.101 = 0.A (d) 0.010101… = 0.555…
3.10 (a) 0 (b) 5 (c) 3 (d) 11
3.13 (a) 5 (b) 3 (c) 24 (d) 25
3.14 (a) 6325 (b) 40959 (c) 2736 (d) 29000
3.15 (a) f(n) = f(n−1) + f(n−2) + f(n−3) (b) f(n−1) + 10 (c) n × f(n−1) (d) f(n−1) + ½ f(n−2)
3.16 (a) f(n) = 3(2n) − 2(−1)n (b) f(n) = 2n + n(2n−1) (c) an = ¼ [3n+1 + (−1)n] (d) an = 3n + 1
3.17 (a) f(n) = {(1+√5)/2}n /√5 − {(1−√5)/2}n /√5
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4.1   (a) {2,4} (b) {0,6} (c) {0,1,3,5,6} (d) {1,2,3,4,5}
4.2   (a) T (b) T (c) F (d) T (e) T
4.3   (a) |{φ, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}|=8 (c) |{φ}|=1 (d) |{φ, {φ}, {{1}}, {φ, {1}}|=4
4.5   (a) 64 (b) 2 (c) 8 (d) 32 (e) 4096
4.6   (a) 97 (b) 13 (c) 49 (d) 1465
4.7   (a) 93 (b) 67 (c) 94 (d) 176
4.8   (a) 734 (b) 333 (c) 667 (d) 816
4.10 (a) 24! + 23! − 21! (b) 25! + 24! − 22! − 21! + 20! (c) 26! − 25! − 24! + 23!
4.11 (a) 12 (b) 20160 (c) 4989600 (d) 840
4.12 (a) {000, 001, 010, 011, 100, 101, 110, 111} (b) {aa, ab, ac, ba, bb, bc, ca, cb, cc}
4.13 (a) 35 (b) 35 (c) 1 (d) 8 (e) 127
4.15 (a) 78 (b) 45 (c) 21 (d) 6 (e) 9
4.16 (a) 1/9 (b) 1/6 (c) 11/36 (d) 5/18
4.17 (a) 1/42 (b) 10/21 (c) 31/42 (d) 20/21

5.2   (a) {(1,1),(1,4),(2,2),(3,2)} (b) {(1,2),(2,1),(2,4),(3,1),(3,4)} (c&d) {(1,1),(2,2),(2,3),(4,1)}
5.3   (a&b) reflexive, anti-symmetric, transitive (c) anti-symmetric (d) symmetric
5.7   (a) {0,2,4,6}, {1,3,5} (b) {1}, {2}, {3}, {4} (c) {0,9}, {5,8,11}, {10} (d) {1,6,11}, {2,7}, {3}
5.8

5.9   (a) T (b) T (c) F (d) F

5.10 (a) 


















1000
1100
1110
1111

 (b) 


















1000
0100
1010
1111

 (c) 


















0000
0000
1011
0101

 (d) 


















1111
1110
1100
1000

5.11

5.12 (a) {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,4)}  (b) R ∪ (2,2) (c) R ∪ (2,4) (d) A × A

5.13 (a) 
















110
110
111

 (b) 
















001
101
000

 (c) 


















0000
1000
0010
1110

 (d) 


















1111
1111
1111
1111

6.1   (a) 







110
111

 (b) 
















101110
010000
001111

 (c) 


















0010000
1101110
0011101
0000011

6.2   (a) 
















120
211
010

 (b) 


















0111
1110
1101
1010

 (c) 


















0110
1202
1010
0200

6.4   (a) deg Kn = n(n − 1) (b) deg Km,n = 2mn
6.5   (a) n=1 or n=2 (b) m=1 or n=1
6.6   (a) 12 (b) 17 (c) 115
6.7   (b) pre (1 2 4 8 9 5 3 6 7 10 11) post (8 9 4 5 2 6 10 11 7 3 1) in (8 4 9 2 5 1 6 3 10 7 11)
6.7   (c) (12467358), (67428531), (26471385) (d) (124673589), (674289531), (647213859)
6.9   (a) F (b) Euler path (c) Euler circuit (d) Euler path
6.11 (a) 199 (b) 220
6.12 (a) F (b) T (c) T (d) F
6.13 (a) 2 (b) 3 (c) 4 (d) 4
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Appendix 3 Extra Homework Sets 30–12–2018

Homework 1

1. Convert the binary number to decimal.

(a) 10001

(b) 101010

(c) 1101110

(d) 101100111

2. Convert the decimal number to binary.

(a) 11

(b) 110

(c) 2017

(d) 4096

p q p ∧ q p ∨ q p → q p ↔ q p⊕ q
1 1 1 1 1 1 0
1 0 0 1 0 0 1
0 1 0 1 1 0 1
0 0 0 0 1 1 0

3. Draw the truth table for each proposition.

(a) ¬p ∨ ¬q
(b) ¬q ∧ (p ∧ q)

(c) (p ∨ ¬q) ∧ (¬p ∨ q)

(d) (p ∧ q) ∨ r

4. Draw the truth table for each proposition.

(a) p → (q → r)

(b) ¬(p ↔ q) → q

(c) (p⊕ ¬q) ∨ (¬p ↔ q)

(d) {(p ∧ q) → r} ⊕ {¬p ∨ (q ↔ r)}

5. Use truth table to prove the equivalence.

(a) ¬(p ∨ q) ≡ ¬p ∧ ¬q
(b) p ↔ q ≡ (p → q) ∧ (q → p)

(c) p → (q → r) ≡ q → (p → r)

(d) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

6. Prove true or false.
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(a) p → ¬q ≡ q → ¬p
(b) ¬(p⊕ q) ≡ ¬p ↔ ¬q
(c) p → (q → r) ≡ (p → q) → r

(d) p ∨ (q ⊕ r) ≡ (p ∨ q)⊕ (p ∨ r)

7. Convert each proposition to a CNF and to a DNF.

(a) ¬(p ∧ q) → p

(b) (p⊕ ¬q) ↔ (¬p ∨ q)

(c) (p → q) → r

(d) {(p ∧ q) → r} ⊕ {¬p ∨ (q ↔ r)}

8. Convert each CNF to a DNF and each DNF to a CNF.

(a) (p ∧ ¬q) ∨ (¬p ∧ q)

(b) (p ∨ ¬q) ∧ (¬p ∨ ¬q)
(c) (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ q ∨ ¬r)
(d) (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ ¬r)

9. Evaluate the set operations with A = {1, 2, 3, 4, 5}, B = {2, 4, 6}, C = {1, 3, 5}, and
D = {2, 5, 7, 9}.

(a) (A ∩B) ∪ (C ∩D)

(b) (B − A) ∩ (C ∪D)

(c) {A− (C −D)} −B

(d) (A⊕B)⊕ (C ⊕D)

10. Use Venn diagram to simplify each expression.

(a) (A ∩B)⊕ (A−B)

(b) {A− (A−B)} ⊕B

(c) (A ∪B)⊕ (A ∩B)

(d) (A ∪B)⊕ (A⊕B)

11. Find the elements of P (A).

(a) A = {a, b, c}
(b) A = {2, 3, 4, 5}
(c) A = {x, {7}}
(d) A = ∅

|A| = n → |P (A)| = 2n

12. Evaluate the cardinality with A = {1, 2, 3, 4} and B = {2, 4, 6}.

(a) |P (A ∪B)|
(b) |P (A−B)|
(c) |P (A)− P (B)|
(d) |P (P (A⊕B))|
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Homework 2

1. Evaluate the floor function.

(a) ⌊3.999⌋
(b) ⌊

√
450⌋

(c) ⌊100/7⌋
(d) ⌊−111/22⌋

m mod n = m− ⌊m
n
⌋ × n

2. Evaluate the mod operation.

(a) 11 mod 27

(b) 100 mod 7

(c) −111 mod 22

(d) 12345 mod 15

3. Use SSA to evaluate the power mod.

(a) 233 mod 9

(b) 363 mod 10

(c) 5511 mod 11

(d) 11100 mod 100

gcd(m,n) = gcd(n,m mod n)

4. Evaluate the GCD.

(a) gcd(549, 81)

(b) gcd(1234, 5678)

(c) gcd(234, 60970)

(d) gcd(12345, 54321)

lcm(m,n) = m×n
gcd(m,n)

5. Evaluate the LCM.

(a) lcm(5, 72)

(b) lcm(12, 18)

(c) lcm(136, 17)

(d) lcm(549, 81)

6. Find integers a and b such that gcd(m,n) = am+ bn.

(a) m = 27, n = 25

(b) m = 549, n = 81
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(c) m = 345, n = 215

(d) m = 843, n = 2890

7. Find a−1 mod n.

(a) 7−1 mod 11

(b) 5−1 mod 17

(c) 5−1 mod 18

(d) 13−1 mod 100

8. Determine true or false.

(a) 5−1 mod 7 = 3

(b) 7−1 mod 16 = 7

(c) 10−1 mod 17 = 12

(d) 13−1 mod 20 = 13

9. Given that n = p× q in this RSA example, use the encryption key e to compute the
decryption key d := e−1 mod (p− 1)(q − 1).

(a) n = 55, e = 3,m = 47

(b) n = 65, e = 5,m = 7

(c) n = 91, e = 11,m = 5

(d) n = 391, e = 7,m = 29

10. In Problem 9, (i) compute s := me mod n and (ii) prove that sd mod n = m.

|A ∪B| = |A|+ |B| − |A ∩B|

11. From 1 to 300, count how many:

(a) multiples of 8 or 12

(b) multiples of 8 and 12

(c) not multiples of 12 or 16

(d) multiples of 12 but not 16

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

12. From 1 to 1000, count how many:

(a) multiples of 6 or 15 or 20

(b) multiples of 12 or 18 or 24

(c) multiples of 8 and 12 and 20

(d) not multiples of 14 or 21 or 30
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Homework 3

C(n, k) = n !
k !×(n−k) !

1. Evaluate the binomial coefficients.

(a) C(26, 23)

(b) C(25, 22) + C(25, 23)

(c) C(3, 0) + C(3, 1) + C(3, 2) + C(3, 3)

(d) C(4, 0) + C(4, 1) + C(4, 2) + C(4, 3) + C(4, 4)

2. Count how many subsets of A with the given condition.

(a) |A| = 12; subsets with 7 elements

(b) |A| = 12; subsets with 7 or 8 elements

(c) |A| = 20; subsets with at least 18 elements

(d) |A| = 20; subsets with at least 3 elements

3. Count how many non-negative integer solutions for A+B + C +D = 18 such that

(a) A ≥ 9

(b) A ≥ 4 and B ≥ 7

(c) A ≥ 4 or B ≥ 7

(d) A ≥ 4 or B ≥ 7 or C ≥ 5

4. Count how many non-negative integer solutions for A+B + C = 12 such that

(a) A ≤ 5

(b) A ≤ 1 and B ≤ 1

(c) A ≤ 1 or B ≤ 2 or C ≤ 3

(d) A ≤ 4 and B ≤ 5 and C ≤ 6

5. Given the function S(n), find the first 6 terms in the sequence.

(a) S(n) = ⌊n
2
⌋

(b) S(n) = 2n − 3

(c) S(n) = n2 − n

(d) S(n) = n mod 3

6. Find a suitable function S(n) for the given sequence.

(a) 2, 3, 2, 3, 2, 3, 2, . . .

(b) 1, 2, 5, 10, 17, 26, 37, . . .

(c) 3, 8, 13, 18, 23, 28, 33, . . .

(d) 2, 4, 8, 16, 32, 64, 128, . . .
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7. Given S(0) = 1 and S(1) = 2, find S(5) using the recurrence relation.

(a) S(n) = S(n− 1) + 2S(n− 2) linear, second-order, homogeneous

(b) S(n) = S(n− 1)− S(n− 2) + 2 linear, second-order, non-homogeneous

(c) S(n) = S(n− 1) + S(n− 2)2 quadratic, second-order, non-homogeneous

(d) S(2) = 3, S(n) = S(n− 1) + S(n− 2) + S(n− 3) linear, third, homogeneous

8. Find a suitable linear second-order recurrence relation for the given sequence.

(a) 2, 1, 3, 4, 7, 11, 18, . . .

(b) 1, 2, 4, 7, 12, 20, 33, . . .

(c) 0, 1, 2, 5, 12, 29, 70, . . .

(d) 1, 2, 2, 4, 8, 32, 256, . . .

S(n) = AS(n− 1) +B S(n− 2) → x2 − Ax−B = 0
x1 ̸= x2 → S(n) = C (x1)

n +D (x2)
n

x1 = x2 → S(n) = C (x)n +Dn (x)n

9. Find the function S(n) given by its recurrence relation.

(a) S(0) = 1, S(1) = 3, S(n) = S(n− 1) + 6S(n− 2)

(b) S(0) = 2, S(1) = 3, S(n) = S(n− 1) + 12S(n− 2)

(c) S(0) = 2, S(1) = 3, S(n) = 6S(n− 1)− 9S(n− 2)

(d) S(0) = 0, S(1) = 1, S(n) = −2S(n− 1) + 15S(n− 2)

10. Find a suitable linear second-order homogeneous recurrence relation for the given
sequence, and then find the explicit formula for the function S(n).

(a) 0, 1, 1, 2, 3, 5, 8, . . .

(b) 0, 1, 1, 3, 5, 11, 21, . . .

(c) 2, 1, 3, 4, 7, 11, 18, . . .

(d) 0, 1, 2, 5, 12, 29, 70, . . .

11. Prove the formula for all n ≥ 1 using mathematical induction.

(a) 2 + 4 + 6 + 8 + · · ·+ 2n = n(n+ 1)

(b) 1 + 5 + 25 + 125 + · · ·+ 5n = 5n+1−1
4

(c) 1 + 4 + 9 + 16 + · · ·+ n2 = n(n+1)(2n+1)
6

(d) 1
1×2

+ 1
2×3

+ 1
3×4

+ · · ·+ 1
n(n+1)

= n
n+1

(e) 1(1 !) + 2(2 !) + 3(3 !) + · · ·+ n(n !) = (n+ 1) !− 1

12. Prove the inequality using mathematical induction.

(a) n < 2n for all n ≥ 1

(b) 2n > n2 for all n ≥ 5

(c) 2n < n ! for all n ≥ 4

(d) n ! > 3n for all n ≥ 7

(e) n ! < nn for all n ≥ 2
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Homework 4

1. Use digraph to represent the relation R on A = {1, 2, 3, 4, 5}.

(a) R = {(x, y) | x < y}
(b) R = {(x, y) | x+ y ≥ 7}
(c) R = {(x, y) | x− y = 1}
(d) R = {(x, y) | (x− y)2 = 1}

2. Convert the digraph to matrix.

(a)

1

5 2

34

(b)

1 2

34

(c)

4

2

5 3

1

(d)

1 2

34
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3. Use matrix to represent the relation R on A = {1, 2, 3, 4}.

(a) R = {(x, y) | x mod y = 0}
(b) R = {(x, y) | x mod y ̸= 0}
(c) R = {(x, y) | y mod x = 0}
(d) R = {(x, y) | x mod y = 1}

4. Convert the relation matrix to digraph.

(a)
0 1 0 1
1 0 0 1
0 0 0 1
1 0 1 0


(b)

0 0 1 1
1 0 0 0
1 0 0 1
1 1 1 0


(c)

0 0 1 0
0 1 0 0
0 0 1 0
1 0 1 0


(d)

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


S ◦R = {(a, c) | (a, b) ∈ R ∧ (b, c) ∈ S}

5. GivenR =


0 1 0 1
0 0 0 1
0 0 0 1
1 0 1 0

 and S =


0 0 1 1
1 0 0 0
1 0 0 1
0 0 1 0

 find the composition matrix.

(a) R ◦ S
(b) S ◦R
(c) R ◦ S ◦ S
(d) S ◦R ◦R

R = R ∪R2 ∪R3 ∪ · · · ∪Rn
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6. Given the relation matrix R, find the matrix for the transitive closure R.

(a)
0 0 0 1
1 0 0 0
0 0 0 1
0 0 1 0


(b)

0 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0


(c)

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


(d)

0 0 1 0
1 0 1 0
1 0 0 0
1 0 1 0


7. Convert the Hasse diagram to matrix.

(a) 5

21

34

(b) 2

1 3

4

(c) 2
1

3
4

(d) 2 1

3

4 5
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8. Convert the partial order relation matrix to Hasse diagram.

(a)
1 1 0 0
0 1 0 0
0 1 1 0
1 1 1 1


(b)

1 1 0 0
0 1 0 0
1 1 1 0
1 1 0 1


(c)

1 1 1 0
0 1 0 0
0 0 1 0
1 1 1 1


(d)

1 1 0 0
0 1 0 0
1 1 1 0
1 1 1 1


9. Draw the Hasse diagram for the partial order R = {(x, y) | y mod x = 0} on A.

(a) A = {1, 2, 4, 8, 16}
(b) A = {2, 3, 6, 12, 18}
(c) A = {1, 2, 3, 4, 6, 12}
(d) A = {2, 3, 12, 18, 36}

10. Use incidence matrix to represent the graph.

(a) 5 2

1

34

(b) 2

1 3

4

(c) 2
1

3
4

(d) 2 1

3

4 5
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11. Convert the incidence matrix to adjacency matrix.

(a)
1 0 1 0
0 1 0 0
0 0 1 1
1 1 0 1


(b)

1 1 0
0 1 0
0 0 1
1 0 1


(c)

1 1 0 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1
1 0 1 1 0 0


(d)

0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0


12. Convert the adjacency matrix to incidence matrix.

(a)
0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0


(b)

0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0


(c)

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0


(d)

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
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Homework 5

1. For each graph, give the (i) adjacency matrix (ii) incidence matrix.

(a) K4

(b) K5

(c) K2,2

(d) K1,3

2. Find the degree of each graph.

(a) K10

(b) K4,5

(c) The graphs (a), (b), (c), (d) given by the incidence matrix in Problem 11 of
Homework 4.

(d) The graphs (a), (b), (c), (d) given by the adjacency matrix in Problem 12 of
Homework 4.

3. Determine which graph is a tree.

(a) The graphs (a), (b), (c), (d) in Problem 1.

(b) The graphs (a), (b), (c), (d) in Problem 10 of Homework 4.

(c) The graphs (a), (b), (c), (d) in Problem 11 of Homework 4.

(d) The graphs (a), (b), (c), (d) in Problem 12 of Homework 4.

4. Solve the MST problem for each weighted graph.

(a) ◦

◦

◦ ◦

(b) ◦◦

◦

◦ ◦

(c) ◦ ◦

◦

◦◦

◦
4

5
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(d) ◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦19
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5. Find the output of the pre-order traversal algorithm on each LBT.

(a) A

B C

D E F

G H J

(b) A

C E

F B H

G D

(c) A

G C

F E

DH B

(d) A

F J

C D

G B E H
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6. Repeat Problem 5 using in-order.

7. Repeat Problem 5 using post-order.

8. Determine an Euler path, Euler circuit, or neither.

(a) K5

(b) K6

(c) K2,3

(d) K1,4

(e) ◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

(f) ◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

(g) ◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

(h) ◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
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9. Solve the CPP for the same weighted graphs (a), (b), (c), (d) in Problem 4.

10. Find the chromatic number for the same graphs (a), (b), (c), (d), (e), (f), (g), (h)
in Problem 8.

11. For each map, (i) draw the dual graph (ii) find the chromatic number.

(a) (b) (c) (d)
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12. Draw the spanning tree rooted at vertex 1 using (i) BFS (ii) DFS.

(a) 3

5 6

8 1

(b) 7 2 4

9 1

6 8 3

(c) 5 2 7

4 8 9

6 1 3

(d)

6

10

8 4

5

2

7

3 9

1
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Homework 1

1. (a) 17 (b) 42 (c) 110 (d) 359

2. (a) 1011 (b) 1101110 (c) 11111100001 (d) 1000000000000

3. (a) 0111 (b) 0000 (c) 1001 (d) 11101010

4. (a) 10111111 (b) 1011 (c) 1111 (d) 00100000

5. (a) 0001 (b) 1001 (c) 10111111 (d) 11111000

6. (a) T (b) T (c) F (d) F

7. (a) 1100 (b) 1101 (c) 10111010 (d) 00100000

8. (a) 0110 (b) 0101 (c) 11111000 (d) 01010101

9. (a) {2, 4, 5} (b) ∅ (c) {5} (d) {2, 5, 6, 7, 9}

10. (x) A (x) A⊕B (x) A ∩B (x) B − A

11. (a) {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, A} (c) {∅, {x}, {{7}}, A} (d) {∅} = {A}

12. (a) 32 (b) 4 (c) 12 (d) 256

Homework 2

1. (a) 3 (b) 21 (c) 14 (d) –6

2. (a) 11 (b) 2 (c) 21 (d) 0

3. (a) 8 (b) 7 (c) 5 (d) 1

4. (a) 9 (b) 2 (c) 26 (d) 3

5. (a) 360 (b) 36 (c) 136 (d) 4941

6. (a) –12, 13 (b) 4, –27 (c) 5, –8 (d) –1433, 418

7. (a) 8 (b) 7 (c) 11 (d) 77

8. (a) T (b) T (c) T (d) F

9. (a) 27 (b) 29 (c) 59 (d) 151

10. (a) 38 (b) 37 (c) 73 (d) 279

11. (a) 50 (b) 12 (c) 263 (d) 19

12. (a) 233 (b) 111 (c) 8 (d) 876

Homework 3

1. (a) 2600 (b) 2600 (c) 8 (d) 16

2. (a) 792 (b) 1287 (c) 211 (d) 1048365
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3. (a) 220 (b) 120 (c) 924 (d) 1190

4. (a) 63 (b) 4 (c) 81 (d) 10

5. (a) 0,0,1,1,2,2 (b) –2,–1,1,5,13,29 (c) 0,0,2,6,12,20 (d) 0,1,2,0,1,2

6. (x) 5n+ 3 (x) n2 + 1 (x) 2n+1 (x) 2 + n mod 2

7. (a) 32 (b) 1 (c) 65 (d) 20

8. (x) S(n− 1) + S(n− 2) (x) 2S(n− 1) + S(n− 2) (x) S(n− 1)S(n− 2)
(x) S(n− 1) + S(n− 2) + 1

9. (a) 3n (b) 9
7
(4)n + 5

7
(−3)n (c) (2− n)3n (d) 1

8
(3)n − 1

8
(−5)n

10. (a) 1√
5
(1+

√
5

2
)n − 1√

5
(1−

√
5

2
)n (b) 2n−(−1)n

3
(c) (1+

√
5

2
)n + (1−

√
5

2
)n (d) (1+

√
2)n−(1−

√
2)n

2
√
2

Homework 4

1. (c) 1 2 3 4 5oo oo oooo

2. (a)


1 1 1 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 (b)


0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 1

 (c)


0 0 1 0 0
0 0 1 0 1
1 0 0 1 0
0 0 0 0 1
1 1 0 0 0

 (d)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



3. (a)


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 (b)


0 1 1 1
0 0 1 1
0 1 0 1
0 0 1 0

 (c)


1 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 (d)


0 1 1 1
0 0 0 0
0 1 0 0
0 0 1 0



4.

(a) 1 2

34

(b) 1 2

34

(c) 1 2

34

(d) 1 2
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5. (a)


1 0 1 1
0 1 0 1
1 1 1 1
0 0 0 1

 (b)


1 0 1 0
0 0 1 0
0 0 1 0
1 0 1 1

 (c)


1 1 1 1
1 0 1 1
1 0 1 1
1 1 1 1

 (d)


1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 0



6. (a)


0 0 1 1
1 0 1 1
0 0 1 1
0 0 1 1

 (b)


1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1

 (c)


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (d)


1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0



7. (a)


1 0 0 0 1
0 1 0 0 1
1 1 1 0 1
1 1 0 1 1
0 0 0 0 1

 (b)


1 1 0 0
0 1 0 0
0 1 1 0
1 1 1 1

 (c)


1 1 0 0
0 1 0 0
1 1 1 0
1 1 1 1

 (d)


1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 0 1
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8.

(x)

1

32

4

(x) 2

1 3

4

(x) 2
1

3
4

(x) 2

1

3 4
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9.

(d) ◦

◦◦

◦◦

(c)

◦
◦ ◦

◦

◦
◦ (a) ◦

◦
◦

◦
◦

(b) ◦ ◦

◦

◦ ◦
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10. (a)


1 1 1 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 0
0 0 0 0 1

 (b)


1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1

 (c)


1 1 0
1 0 0
0 1 1
0 0 1



11. (a)


0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

 (b)


0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

 (c)


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 (d)


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0



12. (a)


1 1 0 0
1 0 1 0
0 0 0 1
0 1 1 1

 (b)


1 0 0
0 1 1
1 1 0
0 0 1

 (c)


1 1 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

 (d)


1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1


Homework 5

1. (a)


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 (c)


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0




1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


2. (a) n(n− 1) (b) 2mn (c) columns times two (d) number of ones

3. (a) d (b) c (c) b (d) b

4. (a) 16 (b) 12 (c) 22 (d) 140

5. (x) AGFHCEDB (x) AFCGBJDEH (x) ACFGBEHD (x) ABDGCEHFJ

6. (x) GHFACDEB (x) GDBAHECJF (x) GCBFAJEDH (x) FGCBAEHD

7. (x) GFBCDHEA (x) GDBHEJFCA (x) GBCFEHDJA (x) HFGDBECA

8. (a) EC (b) NO (c) EP (d) NO (e) EP (f) NO (g) EC (h) EP

9. (a) 51 (b) 49 (c) 71 (d) 320

10. (a) 5 (b) 6 (c) 2 (d) 2 (e) 3 (f) 3 (g) 3 (h) 4

11. (a) 3 (b) 2 (c) 4 (d) 3

–Amin Witno
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