PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Set Theory

14 - 06 - 2015

Choose 8 problems; 5 points each.

- 1. Prove the equivalence statement $P \to (Q \land R) \equiv (P \to Q) \land (P \to R)$.
- 2. Use proof by cases to prove that the number $5x^2 7x 3$ is odd for any $x \in \mathbb{Z}$.
- 3. Use contradiction to prove that the number $\sqrt{2}$ is irrational.
- 4. Use induction to prove that $3^n > 1 + 2^n$ for all integer $n \ge 2$.
- 5. Use induction to prove the following formula for all $n \in \mathbb{N}$.

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- 6. Short answers:
 - (a) Let $A = \{n \in \mathbb{Z} \mid -2 \leq n \leq 5\}$ and $B = \{n \in \mathbb{N} \mid n \geq 7\}$. Find the elements in the set $(A \oplus \mathbb{N}) B$.
 - (b) Let $A = \{1, 2, 3, 4\}$ and $S = \{X \in P(A) \mid |X| = 3\}$. Find the elements of S.
 - (c) Let $A = \{n \in \mathbb{N} \mid n < 11\}$ and consider the equivalence relation $R = \{(x, y) \mid x \mod 3 = y \mod 3\}$ on A. Find the elements in the equivalence class [7].
 - (d) Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$. For the closed interval $S = [-5, 2] \subseteq \mathbb{R}$, find the set $f^{-1}(S)$.
 - (e) Give one example of a function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ that is one-to-one and onto.
- 7. Let A and B represent any sets. Use the definition of cardinality to prove that the relation $R = \{(|A|, |B|) \mid |A| = |B|\}$ is an equivalence relation.
- 8. Let $A = \{x \in \mathbb{R} \mid -2 \le x \le 2\}$ and $B = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$. Prove that |A| = |B|.
- 9. Prove that $|\mathbb{Z} \mathbb{N}| = \aleph_0$.