# Philadelphia University <br> Department of Basic Sciences 

## Exam 2

Set Theory

Each problem is worth 4 points.

1. Translate and prove:
(a) There is a natural number $x$ such that $x \bmod 4=2$ and $x \bmod 5=3$.
(b) Not all real numbers $x$ satisfy $x^{2} \geq x$.
2. Prove that the number $\log _{10} 8$ is irrational, using contradiction.
3. Use induction to prove that $5^{2 n}-4$ is a multiple of 3 for all natural numbers $n$.
4. Let $A=\{x \in \mathbb{Z} \mid 1 \leq x \leq 5\}$ and $R=\{(a, b) \in A \times A \mid a+b>2\}$.
(a) Is $R$ reflexive? (True or false?)
(b) Is $R$ symmetric? (True or false?)
(c) Is $R$ anti-symmetric? (True or false?)
(d) Is $R$ transitive? (True or false?)
5. Let $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x$ is a multiple of $y\}$. Prove that $R$ is a partial order relation.
