Philadelphia University Department of Basic Sciences and Mathematics

Final Exam	Set Theory		2-2-2015	
Name:	Number:	Section:		
1. (16 points) Circle the correct answer. (a) The proposition $p \rightarrow (q \rightarrow r)$ is equivalent to				
(A) $q \rightarrow (p \rightarrow r)$	(B) $r \to (q \to p)$	(C) $(p \rightarrow q) \rightarrow r$	$(D) (q \to r) \to p$	
(b) If $A \subseteq B$, then $A \oplus B$ equals				
(A) $A \cup B$	(B) $A \cap B$	(C) $A-B$	(D) $B-A$	
(c) Let $A = \{2, 5, 6, 7, 9\}$ and the equivalence relation $R = \{(a, b) \mid a \mod 2 = b \mod 2\}$. Find the equivalence classes.				
(A) {2,6}, {5,7,9}	(B) $\{2,4,8\},\{5,7\}$	(C) $\{2,7,9\},\{5,6\}$	(D) {2,7,8}, {4,5}	
(d) Which of the following relations is transitive but not anti-symmetric?				
$ \begin{array}{l} (A) \\ (1,3), (3,1), () \\ (C) \\ (1,3), (2,3), () \end{array} $	$ \begin{array}{l} (A) & \{(1,3),(3,1),(1,1),(4,4)\} \\ (C) & \{(1,3),(2,3),(2,4),(3,4)\} \end{array} \end{array} $		$ \left(B \right) \left\{ (1,3), (2,1), (2,3), (4,4) \right\} \\ \left(D \right) \left\{ (1,3), (3,1), (1,1), (3,3) \right\} $	
(e) What is the negation of the proposition "Every integer is even" ?				
()	(A) Every integer is odd (C) There exists an odd integer		(B) There exists an even integer(D) All the integers are even	
(f) Let $f : \mathbb{N} \to \mathbb{Z}$ such that $f(x) = x \mod 3$. What is the range of f ?				
(A) ℕ	(B) ℤ	$(C) \{0, 1, 2, 3\}$	(D) {0,1,2}	
(g) Find $ A $ if $A = \{X \in P(\{1, 2, 3\}) X = 2\}$				
(A) 3	(B) 8	(C) 0	(D) 2	
(h) Which of the following is an infinite set?				
(A) $\left\{ x \in \mathbb{R} \mid x^2 + 1 = 0 \right\}$ (C) $\left\{ 1, 3, 5 \right\} \times \left\{ 2, 4, 6 \right\}$		(B) $\left\{ x \in \mathbb{N} \mid x^2 + x \text{ is prime} \right\}$ (D) The rational numbers in (0,1)		

DR. Amin WitnoMR. Feras Awad

2. (5 points) Let $A = \{x \in \mathbb{Z} \mid x > -9\}$. Prove that $|A| = |\mathbb{N}|$.

3. (5 points) Let $x \in \mathbb{Z}$. Prove that $x^2 - 1$ is a multiple of 4 if and only if x is odd.

4. (4 points) Use the contradiction to show that $\sqrt{2}$ is irrational.

5. (4 points) Use mathematical induction to prove that $2^n < n!$ for all $n \ge 4$.

- prove that the relation $R = \{ (|A|, |B|) | |A| = |B| \}$ is an equivalence relation.
- 6. (6 points) Let A and B represents any sets. Use the definition of cardinal numbers to