Philadelphia University
 Department of Basic Sciences and Mathematics

Final Exam
Set Theory

Name: \qquad Number: \qquad Section: \qquad

1. (16 points) Circle the correct answer.
(a) The proposition $p \rightarrow(q \rightarrow r)$ is equivalent to
(A) $q \rightarrow(p \rightarrow r)$
(B) $r \rightarrow(q \rightarrow p)$
(C) $(p \rightarrow q) \rightarrow r$
(D) $(q \rightarrow r) \rightarrow p$
(b) If $A \subseteq B$, then $A \oplus B$ equals
(A) $A \cup B$
(B) $A \cap B$
(C) $A-B$
(D) $B-A$
(c) Let $A=\{2,5,6,7,9\}$ and the equivalence relation $R=\{(a, b) \mid a \bmod 2=b \bmod 2\}$. Find the equivalence classes.
(A) $\{2,6\},\{5,7,9\}$
(B) $\{2,4,8\},\{5,7\}$
(C) $\{2,7,9\},\{5,6\}$
(D) $\{2,7,8\},\{4,5\}$
(d) Which of the following relations is transitive but not anti-symmetric?
(A) $\{(1,3),(3,1),(1,1),(4,4)\}$
(B) $\{(1,3),(2,1),(2,3),(4,4)\}$
(C) $\{(1,3),(2,3),(2,4),(3,4)\}$
(D) $\{(1,3),(3,1),(1,1),(3,3)\}$
(e) What is the negation of the proposition "Every integer is even"?
(A) Every integer is odd
(B) There exists an even integer
(C) There exists an odd integer
(D) All the integers are even
(f) Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ such that $f(x)=x \bmod 3$. What is the range of f ?
(A) \mathbb{N}
(B) \mathbb{Z}
(C) $\{0,1,2,3\}$
(D) $\{0,1,2\}$
(g) Find $|A|$ if $A=\{X \in P(\{1,2,3\})| | X \mid=2\}$
(A) 3
(B) 8
(C) 0
(D) 2
(h) Which of the following is an infinite set?
(A) $\left\{x \in \mathbb{R} \mid x^{2}+1=0\right\}$
(B) $\left\{x \in \mathbb{N} \mid x^{2}+x\right.$ is prime $\}$
(C) $\{1,3,5\} \times\{2,4,6\}$
(D) The rational numbers in $(0,1)$
2. (5 points) Let $A=\{x \in \mathbb{Z} \mid x>-9\}$. Prove that $|A|=|\mathbb{N}|$.
3. (5 points) Let $x \in \mathbb{Z}$. Prove that $x^{2}-1$ is a multiple of 4 if and only if x is odd.
4. (4 points) Use the contradiction to show that $\sqrt{2}$ is irrational.
5. (4 points) Use mathematical induction to prove that $2^{n}<n!$ for all $n \geq 4$.
6. (6 points) Let A and B represents any sets. Use the definition of cardinal numbers to prove that the relation $R=\{(|A|,|B|)| | A|=|B|\}$ is an equivalence relation.
\qquad
