Philadelphia University
 Department of Basic Sciences

Exam 2

Set Theory

1. Translate and prove:
(a) There is a real number x such that $x=x^{2}$.
(b) Not all integers x satisfy $x+1>2 x$.
2. Use contradiction to prove that $\sqrt[3]{2}$ is irrational.
3. Use induction to prove the following formula for all $n \in \mathbb{N}$.

$$
1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+n \cdot n!=(n+1)!-1
$$

4. Let $R=\{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a+b$ is odd $\}$. True or false?
(a) Is R reflexive?
(b) Is R symmetric?
(c) Is R anti-symmetric?
(d) Is R transitive?
5. Let $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x-y=7 k$ for some $k \in \mathbb{Z}\}$.
(a) Prove that R is an equivalence relation.
(b) What are the elements in the equivalence class [20]?

-Amin Witno

-Feras Awad

