PHILADELPHIA UNIVERSITY

DEPARTMENT OF BASIC SCIENCES

Exam 2 Set Theory 22–12–2014

- 1. Translate and prove:
 - (a) There is a real number x such that $x = x^2$.
 - (b) Not all integers x satisfy x + 1 > 2x.
- 2. Use contradiction to prove that $\sqrt[3]{2}$ is irrational.
- 3. Use induction to prove the following formula for all $n \in \mathbb{N}$.

$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1$$

- 4. Let $R = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a + b \text{ is odd}\}$. True or false?
 - (a) Is R reflexive?
 - (b) Is R symmetric?
 - (c) Is R anti-symmetric?
 - (d) Is R transitive?
- 5. Let $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x y = 7k \text{ for some } k \in \mathbb{Z} \}.$
 - (a) Prove that R is an equivalence relation.
 - (b) What are the elements in the equivalence class [20]?
- -Amin Witno
- -Feras Awad