PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Set Theory

10 - 06 - 2014

Solutions must be complete in order to receive full credit.

- 1. Find the elements in A.
 - (a) $A = \{1, 2, 3, 4, 5\} \oplus \{1, 3, 5, 7\}$
 - (b) $A = \{x \in \mathbb{Z} \mid x^2 + 2x 3 = 0\} \mathbb{N}$
 - (c) $A = \{x \in \mathbb{R} \mid x^2 \le 9\} \cap \mathbb{Z}$
 - (d) $A = \{X \subseteq \{1, 3, 5\} \mid |X| = 2\}$
- 2. Let $x \in \mathbb{Z}$. Prove that the number $3x^2 2x 11$ is odd if and only if x is even.
- 3. Use contradiction to prove that the number $\sqrt{2}$ is irrational.
- 4. Use induction to prove the following formula for all $n \in \mathbb{N}$.

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- 5. Let $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a b \text{ is a multiple of } 3\}$. Prove that R is an equivalence relation on \mathbb{Z} .
- 6. Let $A = \{x \in \mathbb{Z} \mid x > -9\}$. Prove that $|A| = \aleph_0$.
- 7. Let $A = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$ and $B = \{x \in \mathbb{R} \mid 1 \le x \le 3\}$. Prove that |A| = |B|.

-Amin Witno