Philadelphia University

Department of Basic Sciences

Solutions must be complete in order to receive full credit.

1. Find the elements in A.
(a) $A=\{1,2,3,4,5\} \oplus\{1,3,5,7\}$
(b) $A=\left\{x \in \mathbb{Z} \mid x^{2}+2 x-3=0\right\}-\mathbb{N}$
(c) $A=\left\{x \in \mathbb{R} \mid x^{2} \leq 9\right\} \cap \mathbb{Z}$
(d) $A=\{X \subseteq\{1,3,5\}| | X \mid=2\}$
2. Let $x \in \mathbb{Z}$. Prove that the number $3 x^{2}-2 x-11$ is odd if and only if x is even.
3. Use contradiction to prove that the number $\sqrt{2}$ is irrational.
4. Use induction to prove the following formula for all $n \in \mathbb{N}$.

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

5. Let $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a-b$ is a multiple of 3$\}$. Prove that R is an equivalence relation on \mathbb{Z}.
6. Let $A=\{x \in \mathbb{Z} \mid x>-9\}$. Prove that $|A|=\aleph_{0}$.
7. Let $A=\{x \in \mathbb{R} \mid 1 \leq x \leq 2\}$ and $B=\{x \in \mathbb{R} \mid 1 \leq x \leq 3\}$. Prove that $|A|=|B|$.
-Amin Witno
