Philadelphia University

Department of Basic Sciences

Final Exam
Set Theory
05-02-2014

Solutions must be complete in order to receive full credit.

1. Short answer:
(a) Let $A=\{x \in \mathbb{N} \mid x \leq 9\}$ and $B=\{x \in \mathbb{N} \mid x<6\}$. Find the elements in $A \oplus B$.
(b) Let $A=\{x \in \mathbb{Q} \mid 2 x \in \mathbb{Z}\}$ and $B=\{x \in \mathbb{Q} \mid 0 \leq x \leq 2\}$. Find the elements in $(A \cap B)-\mathbb{Z}$.
(c) Let $A=\{\{a\}, \phi\}$. What is the power set $P(A)$?
(d) Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ such that $f(x)=x \bmod 3$. What is the range of f ?
(e) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}+1$, and let $S=\{x \in \mathbb{R} \mid-1 \leq x \leq 10\}$. What is the set $f^{-1}(S)$?
2. Let $x \in \mathbb{Z}$. Prove that $x^{2}-1$ is a multiple of 4 if and only if x is odd.
3. Use contradiction to prove that the number $\log 5$ is irrational.
4. Use induction to prove the following formula for all $n \in \mathbb{N}$.

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

5. Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that $f(x)=3 x-2$. Prove that the function f is one-to-one and onto.
6. Let A and B represent any sets. Use the definition of cardinal numbers to prove that the relation $R=\{(|A|,|B|)| | A|=|B|\}$ is an equivalence relation.
7. Use the definition of cardinal numbers to prove that $|\mathbb{Z}-\mathbb{N}|=\aleph_{0}$.
8. If A and B are countable sets, prove that $A \times B$ is also countable.
