PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Set Theory

05 - 02 - 2014

Solutions must be complete in order to receive full credit.

- 1. Short answer:
 - (a) Let $A = \{x \in \mathbb{N} \mid x \le 9\}$ and $B = \{x \in \mathbb{N} \mid x < 6\}$. Find the elements in $A \oplus B$.
 - (b) Let $A = \{x \in \mathbb{Q} \mid 2x \in \mathbb{Z}\}$ and $B = \{x \in \mathbb{Q} \mid 0 \le x \le 2\}$. Find the elements in $(A \cap B) \mathbb{Z}$.
 - (c) Let $A = \{\{a\}, \phi\}$. What is the power set P(A)?
 - (d) Let $f : \mathbb{N} \to \mathbb{Z}$ such that $f(x) = x \mod 3$. What is the range of f?
 - (e) Let $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2 + 1$, and let $S = \{x \in \mathbb{R} \mid -1 \le x \le 10\}$. What is the set $f^{-1}(S)$?
- 2. Let $x \in \mathbb{Z}$. Prove that $x^2 1$ is a multiple of 4 if and only if x is odd.
- 3. Use contradiction to prove that the number log 5 is irrational.
- 4. Use induction to prove the following formula for all $n \in \mathbb{N}$.

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- 5. Let $f : \mathbb{Q} \to \mathbb{Q}$ such that f(x) = 3x 2. Prove that the function f is one-to-one and onto.
- 6. Let A and B represent any sets. Use the definition of cardinal numbers to prove that the relation $R = \{(|A|, |B|) \mid |A| = |B|\}$ is an equivalence relation.
- 7. Use the definition of cardinal numbers to prove that $|\mathbb{Z} \mathbb{N}| = \aleph_0$.
- 8. If A and B are countable sets, prove that $A \times B$ is also countable.

-Amin Witno