Philadelphia University
 Department of Basic Sciences

Exam 2

Set Theory
11-12-2013

1. Prove:
(a) There is a prime number p such that $p \bmod 3=2$ and $p \bmod 4=3$.
(b) Not all natural number $2 n+1$ is prime.
2. Use contradiction to prove that $\sqrt[3]{4}$ is an irrational number.
3. Use induction to prove that $11^{n}-6$ is a multiple of 5 for all $n \in \mathbb{N}$.
4. Let $R=\{(a, b) \in \mathbb{R} \times \mathbb{R}| | a|=|b|\}$.
(a) Prove that R is an equivalence relation on \mathbb{R}.
(b) Find the equivalence class of $a=3$.
5. Let $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a b>0\}$. True or false?
(a) R is reflexive.
(b) R is symmetric.
(c) R is anti-symmetric.
(d) R is transitive.
