PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Set Theory

11 - 12 - 2013

- 1. Prove:
 - (a) There is a prime number p such that $p \mod 3 = 2$ and $p \mod 4 = 3$.
 - (b) Not all natural number 2n + 1 is prime.
- 2. Use contradiction to prove that $\sqrt[3]{4}$ is an irrational number.
- 3. Use induction to prove that $11^n 6$ is a multiple of 5 for all $n \in \mathbb{N}$.
- 4. Let $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid |a| = |b|\}.$
 - (a) Prove that R is an equivalence relation on \mathbb{R} .
 - (b) Find the equivalence class of a = 3.
- 5. Let $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid ab > 0\}$. True or false?
 - (a) R is reflexive.
 - (b) R is symmetric.
 - (c) R is anti-symmetric.
 - (d) R is transitive.

-Amin Witno