Philadelphia University
 Department of Basic Sciences

Final Exam

Set Theory
08-06-2013

Write complete solutions.

1. Prove the equivalence $p \oplus q \equiv(p \wedge \neg q) \vee(q \wedge \neg p)$.
2. Use contrapositive to prove that for $x \in \mathbb{Z}$, if $3 x^{2}-7 x-4$ is odd, then x is even.
3. Use contradiction to prove that the number $\log _{10} 5$ is irrational.
4. Use induction to prove that $3^{n}>1+2^{n}$ for all integer $n \geq 2$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=-3 x+5$. Prove that f is one-to-one and onto.
6. For any sets A and B, let $(A, B) \in R$ if and only if there exists a one-to-one and onto function $f: A \rightarrow B$. Prove that R is an equivalence relation.
7. Let $S=\{n \in \mathbb{Z} \mid n \geq-5\}$. Prove that $|S|=\aleph_{0}$.
