Philadelphia University
 Department of Basic Sciences

Exam 1

Set Theory
06-11-2012

Part 1: Short Answer

1. Which one is not equivalent to $p \leftrightarrow q$? Choose one:
(a) $p \oplus \neg q$ (b) $\neg p \oplus q$ (c) $\neg p \leftrightarrow \neg q$ (d) $\neg p \oplus \neg q$
2. Which one is equivalent to $\neg p \rightarrow q$? Choose one:

$$
\text { (a) } p \rightarrow \neg q \text { (b) } q \rightarrow \neg p \text { (c) } \neg q \rightarrow p \text { (d) } \neg q \rightarrow \neg p
$$

3. Let $A=\{1,2,3,4\}$ and $B=\{3,4,5,6\}$. What is $(A \cup B)-B$?
4. Let $A=\{1,2,3,4,5,6\}$. What are the elements of the set $\{x \in \mathbb{Z} \mid 2 x \in A\}$?
5. Let $A \subseteq B$. Then $A \oplus B=$ (Choose one:)
(a) $A \cap B$ (b) $A-B$ (c) $B-A$ (d) $A \cup B$
6. Let $A=\{\phi, x\}$. What is $P(A)$?
7. Let $A=\{1,2\}$ and $B=\{2,3,4\}$. What is $|P(A \times B)|$?
8. Which one is false? Choose one:
(a) $x \in\{x, y, z\}$ (b) $\{x\} \subseteq\{x, y, z\}$
(c) $\phi \subseteq\{x, y, z\}$
(d) $\phi \in\{x, y, z\}$

Part2: Complete Solution

1. Prove the equivalence $(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$.
2. Use proof by cases to prove that $3 x^{2}-x-7$ is an odd number for all $n \in \mathbb{Z}$.
3. Prove using contrapositive: If $x^{2}+x$ is an irrational number, then $2 x+1$ is also irrational.
