PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 1

Set Theory

06 - 11 - 2012

Part 1: Short Answer

- 1. Which one is not equivalent to $p \leftrightarrow q$? Choose one: (a) $p \oplus \neg q$ (b) $\neg p \oplus q$ (c) $\neg p \leftrightarrow \neg q$ (d) $\neg p \oplus \neg q$
- 2. Which one is equivalent to $\neg p \rightarrow q$? Choose one: (a) $p \rightarrow \neg q$ (b) $q \rightarrow \neg p$ (c) $\neg q \rightarrow p$ (d) $\neg q \rightarrow \neg p$
- 3. Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$. What is $(A \cup B) B$?
- 4. Let $A = \{1, 2, 3, 4, 5, 6\}$. What are the elements of the set $\{x \in \mathbb{Z} \mid 2x \in A\}$?
- 5. Let $A \subseteq B$. Then $A \oplus B =$ (Choose one:) (a) $A \cap B$ (b) A - B (c) B - A (d) $A \cup B$
- 6. Let $A = \{\phi, x\}$. What is P(A)?
- 7. Let $A = \{1, 2\}$ and $B = \{2, 3, 4\}$. What is $|P(A \times B)|$?
- 8. Which one is false? Choose one: (a) $x \in \{x, y, z\}$ (b) $\{x\} \subseteq \{x, y, z\}$ (c) $\phi \subseteq \{x, y, z\}$ (d) $\phi \in \{x, y, z\}$

Part2: Complete Solution

- 1. Prove the equivalence $(p \lor q) \to r \equiv (p \to r) \land (q \to r)$.
- 2. Use proof by cases to prove that $3x^2 x 7$ is an odd number for all $n \in \mathbb{Z}$.
- 3. Prove using contrapositive: If $x^2 + x$ is an irrational number, then 2x + 1 is also irrational.

–Amin Witno