Philadelphia University

Department of Basic Sciences

Final Exam

Set Theory

Solutions must be complete in order to receive full credit.

1. Prove the equivalence statement for $x \in \mathbb{Z}$.

The number $2 x^{2}-7 x+1$ is odd if and only if x is even.
2. Prove using induction for all $n \in \mathbb{N}$.

$$
1+4+9+16+\cdots+n^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}
$$

3. Prove using truth table or Venn diagrams.

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

4. Consider the matrix for a relation R :

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

(a) Is R reflexive? Why or why not?
(b) Is R symmetric? Why or why not?
(c) Is R anti-symmetric? Why or why not?
(d) Is R transitive? Why or why not?
(e) Find $R^{2}=R \circ R$.
(f) Find the matrix for R^{2}.
5. Let $A=\{x \in \mathbb{Z} \mid 1 \leq x \leq 9\}$ and $R=\{(a, b) \mid b \bmod a=0\} \subseteq A \times A$.
(a) Prove that R is a partial order relation.
(b) Draw the digraph of R and its Hasse diagram.
(c) Is R a total order? Why or why not?
(d) Is there a least element? Why or why not?
6. Let A be the set of all positive odd numbers. Prove that $|A|=\aleph_{0}$.

