Philadelphia University
 Department of Basic Sciences

Set Theory
07-06-2010

Choose 5 problems only.

1. Is the following argument valid? Prove it.

Premise 1: Either n is odd or n is prime.
Premise 2: If n is even then n is composite.
Conclusion: $\quad n$ is composite if and only if n is odd.
2. Prove that $x^{2}-8 x+5$ is odd if and only if x is even.
3. Prove that $13^{2 n}+6$ is divisible by 7 for every integer $n \geq 0$.
4. Prove that $\sqrt{5}$ is irrational.
5. Let $A=\{1,2,3,4\}$ and

$$
R=\{(X, Y)| | X|=|Y|\} \subseteq P(A) \times P(A)
$$

Prove that R is an equivalence relation and find the equivalence classes.
6. Let $A=\{2 n \mid n \in \mathbb{Z}\}$ and $B=\{5 n \mid n \in \mathbb{Z}\}$. Prove that $|A|=|B|$.
-Amin Witno

