# Philadelphia University <br> Department of Basic Sciences 

## Exam 2

Set Theory

Each problem is worth 4 points.

1. Prove by induction for all $n \geq 1$.

$$
\sum_{k=0}^{n-1} 9^{k}=\frac{9^{n}-1}{8}
$$

2. Prove that $A \oplus B=A-B$ if and only if $B \subseteq A$.
3. Let $A=\{1,2,3,4\}$. Give an example of a relation $R$ on $A$ which is
(a) symmetric, transitive, not reflexive
(b) reflexive, not anti-symmetric, not transitive
4. Let $A=\{2,3,6,8,12,24\}$ and $R=\{(a, b) \in A \times A \mid b \bmod a=0\}$.
(a) Find the elements of $R$.
(b) Prove that $R$ is a partial order relation.
(c) Is $R$ a total order? Why or why not?
5. Let $\mathbf{Z}$ be the set of integers and $R=\{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a+b$ is even $\}$.
(a) Prove that $R$ is an equivalence relation.
(b) Find the equivalence classes of $\mathbf{Z}$ under $R$.
