PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Set Theory [Exam 1] 2–4–2006

Each problem is worth 5 points.

- 1. (a) Draw the truth table for $(\neg p \rightarrow q) \leftrightarrow (\neg q \rightarrow p)$.
 - (b) Write the negation of p: "for all real numbers $x, x^2 > 2x$ ".
 - (c) Let $P(x,y): x^2 > y^3$. Find the values of $\exists y \forall x P(x,y)$ and $\forall y \exists x P(x,y)$.
- 2. (a) Prove that there is an integer n such that n mod 3 = 2 and n mod 4 = 3.
 (b) Prove that there is a unique natural number n such that n² = n.
- 3. Prove that $n^2 2n + 5$ is even if and only if n is odd.
- 4. Prove by contradiction that $\sqrt[3]{2}$ is irrational.

-Amin Witno-