Philadelphia University
 Department of Basic Sciences

Set Theory [Exam 1] 2-4-2006

Each problem is worth 5 points.

1. (a) Draw the truth table for $(\neg p \rightarrow q) \leftrightarrow(\neg q \rightarrow p)$.
(b) Write the negation of p :"for all real numbers $x, x^{2}>2 x$ ".
(c) Let $P(x, y): x^{2}>y^{3}$. Find the values of $\exists y \forall x P(x, y)$ and $\forall y \exists x P(x, y)$.
2. (a) Prove that there is an integer n such that $n \bmod 3=2$ and $n \bmod 4=3$.
(b) Prove that there is a unique natural number n such that $n^{2}=n$.
3. Prove that $n^{2}-2 n+5$ is even if and only if n is odd.
4. Prove by contradiction that $\sqrt[3]{2}$ is irrational.
-Amin Witno-
