Philadelphia University

Department of Basic Sciences

Final Exam

Probability Theory

29-01-2020
Each problem is worth 4 points.

1. Two dice are rolled. Let (x, y) denote the outcome. Let $A=\{(x, y) \mid x+y \geq 6\}$ and $B=\{(x, y) \mid x y$ is odd $\}$. Compute $P(A \cup B)$.
2. A Mathematics student has probability 81% to pass the Final Exam if he will study, and 54% if he will NOT study. The probability he will study is 66%. Given that the student passed the Final Exam, compute the probability that he did NOT study.
3. Compute $P(6<X<9)$ given the distribution function

$$
F(x)=\left\{\begin{array}{cl}
1-\frac{9}{x^{2}} & \text { for } x \geq 3 \\
0 & \text { for } x<3
\end{array}\right.
$$

4. Given the joint probability distribution $f(x, y)=k\left(x^{2}+y\right)$ on the domain $x \in$ $\{-1,1,3\}$ and $y \in\{2,3\}$. (a) Find the value of k. (b) Compute $P(X+Y>3)$.
5. Compute $P(1<X<2 ; Y \leq 2)$ given the joint distribution function

$$
F(x, y)=\left\{\begin{array}{cl}
1-e^{-x}-e^{-y}+e^{-x-y} & \text { for } x, y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

6. Compute the conditional density of Y given $(X=1)$ with the joint p.d.f

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{5}(2 x+y) & \text { for } 0<x<2 ; 0<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

7. Write the double integral (ONLY THE INTEGRAL) to compute $P\left(X, Y<\frac{1}{2}\right)$ given the joint p.d.f $f(x, y)$ on the domain $\{0<x<1 ;-x<y<x\}$.
8. Given that $\sigma_{X}^{2}=3, \sigma_{Y}^{2}=4, \sigma_{Z}^{2}=5$ and $\sigma_{X Y}=3, \sigma_{X Z}=-2, \sigma_{Y Z}=1$. Let $W=X+2 Y-3 Z$ and compute the variance σ_{W}^{2}.
9. Compute the covariance $\sigma_{X Y}$ given the joint probability density function

$$
f(x, y)=\left\{\begin{array}{cl}
x+y & \text { for } 0<x, y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

10. Compute μ and σ^{2} for each distribution.
(a) The uniform distribution given by $f(x)=\frac{1}{b-a}$ on the domain $x \in[a, b]$.
(b) The Pareto distribution given by $f(x)=\frac{2}{x^{3}}$ on the domain $x \in[1, \infty)$.
11. (BONUS) Let X have the exponential distribution with the probability density function $f(x)=\lambda e^{-\lambda x}$ on the domain $x \in[0, \infty)$, for some $\lambda>0$. Compute μ.
