PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Problem Solving

05 - 02 - 2015

1. Find the following sum with proof. Express your answer as a single fraction $\frac{f(n)}{g(n)}$.

$$\frac{1}{3 \cdot 4 \cdot 5} + \frac{2}{4 \cdot 5 \cdot 6} + \frac{3}{5 \cdot 6 \cdot 7} + \dots + \frac{n-3}{(n-1)n(n+1)}$$

2. Given that

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Derive the formula for the sum $1^3 + 2^3 + 3^3 + \cdots + n^3$.

3. Write the identity for the following pattern (without proof).

$$1 + 2 = 3$$

$$4 + 5 + 6 = 7 + 8$$

$$9 + 10 + 11 + 12 = 13 + 14 + 15$$

$$16 + 17 + 18 + 19 + 20 = 21 + 22 + 23 + 24$$

$$\dots = \dots$$

4. Prove the following identity involving the binomial coefficients.

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

- 5. Find the formula for S_n given that $S_0 = 2$ and $S_1 = 1$, and the recurrence relation $S_n = S_{n-1} + S_{n-2}$ for $n \ge 2$.
- 6. Let the Fibonacci numbers F_n be defined by $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Prove the identity $\sum_{k=0}^n F_k^2 = F_n F_{n+1}$.
- 7. Find the identity for the finite sum $F_1 + F_3 + F_5 + F_7 + \cdots$ and prove it.
- 8. Write the identity for the following pattern involving F_n and prove it.

$$1 - 1 + 2 = 1 + 1$$

$$1 - 1 + 2 - 3 = 1 - 2$$

$$1 - 1 + 2 - 3 + 5 = 1 + 3$$

$$1 - 1 + 2 - 3 + 5 - 8 = 1 - 5$$

$$1 - 1 + 2 - 3 + 5 - 8 + 13 = 1 + 8$$
...

-Amin Witno