## Philadelphia University

## Department of Basic Sciences

## Final Exam

Problem Solving
05-02-2015

1. Find the following sum with proof. Express your answer as a single fraction $\frac{f(n)}{g(n)}$.

$$
\frac{1}{3 \cdot 4 \cdot 5}+\frac{2}{4 \cdot 5 \cdot 6}+\frac{3}{5 \cdot 6 \cdot 7}+\cdots+\frac{n-3}{(n-1) n(n+1)}
$$

2. Given that

$$
\begin{aligned}
1+2+3+\cdots+n & =\frac{n(n+1)}{2} \\
1^{2}+2^{2}+3^{2}+\cdots+n^{2} & =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Derive the formula for the sum $1^{3}+2^{3}+3^{3}+\cdots+n^{3}$.
3. Write the identity for the following pattern (without proof).

$$
\begin{aligned}
1+2 & =3 \\
4+5+6 & =7+8 \\
9+10+11+12 & =13+14+15 \\
16+17+18+19+20 & =21+22+23+24
\end{aligned}
$$

$$
\cdots=\cdots
$$

4. Prove the following identity involving the binomial coefficients.

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

5. Find the formula for $S_{n}$ given that $S_{0}=2$ and $S_{1}=1$, and the recurrence relation $S_{n}=S_{n-1}+S_{n-2}$ for $n \geq 2$.
6. Let the Fibonacci numbers $F_{n}$ be defined by $F_{0}=F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Prove the identity $\sum_{k=0}^{n} F_{k}^{2}=F_{n} F_{n+1}$.
7. Find the identity for the finite sum $F_{1}+F_{3}+F_{5}+F_{7}+\cdots$ and prove it.
8. Write the identity for the following pattern involving $F_{n}$ and prove it.

$$
\begin{aligned}
1-1+2 & =1+1 \\
1-1+2-3 & =1-2 \\
1-1+2-3+5 & =1+3 \\
1-1+2-3+5-8 & =1-5 \\
1-1+2-3+5-8+13 & =1+8
\end{aligned}
$$

