# Philadelphia University 

## Department of Basic Sciences

## Exam 2

Problem Solving
29-12-2014

1. (a) Count how many integer solutions with $x_{i} \geq 2$ in the following equation.

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=50
$$

(b) Evaluate the sum $S$.

$$
S=\binom{50}{46}+3\binom{50}{47}+3\binom{50}{48}+\binom{50}{49}
$$

2. Find the formula for $S_{n}$ given that $S_{0}=2$ and $S_{1}=1$, where for $n \geq 2$,

$$
S_{n}=3 S_{n-1}+4 S_{n-2}
$$

3. Find the formula for the sum

$$
\sum_{k=0}^{n}\binom{n}{k} k^{2}
$$

by differentiating the binomial expansion for $(1+x)^{n}$.
4. Write the identity for the following pattern and prove it.

$$
\begin{aligned}
1 \cdot 1 & =1 \\
1 \cdot 1+1 \cdot 2 & =3 \\
1 \cdot 1+2 \cdot 2+1 \cdot 4 & =9 \\
1 \cdot 1+3 \cdot 2+3 \cdot 4+1 \cdot 8 & =27 \\
1 \cdot 1+4 \cdot 2+6 \cdot 4+4 \cdot 8+1 \cdot 16 & =81 \\
\cdots & =\cdots
\end{aligned}
$$

5. Find the numbers $a$ and $b$ in the following formula, without proof.
(a)

$$
\binom{n}{1}^{2}-\binom{n}{1}-\binom{n}{2}=\binom{a}{b}
$$

(b)

$$
\sum_{m=6}^{n}\binom{m}{6}=\binom{a}{b}
$$

