Philadelphia University

Department of Basic Sciences

Exam 1

Problem Solving

1. How many terminating zeros does the number 2015 ! have?
2. Find the following sum with proof. Express your answer as a single fraction $\frac{f(n)}{g(n)}$.

$$
\frac{1}{1 \cdot 4}+\frac{1}{2 \cdot 5}+\frac{1}{3 \cdot 6}+\cdots \frac{1}{(n-2)(n+1)}
$$

3. Given that

$$
\begin{aligned}
1+2+3+\cdots+n & =\frac{n(n+1)}{2} \\
1^{2}+2^{2}+3^{2}+\cdots+n^{2} & =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Derive the formula for the sum $1^{3}+2^{3}+3^{3}+\cdots+n^{3}$.
4. Write the identity for the following pattern and prove it using induction.

$$
\begin{aligned}
1^{3} & =1^{2} \\
1^{3}+2^{3} & =(1+2)^{2} \\
1^{3}+2^{3}+3^{3} & =(1+2+3)^{2} \\
1^{3}+2^{3}+3^{3}+4^{3} & =(1+2+3+4)^{2}
\end{aligned}
$$

