Philadelphia University

Department of Basic Sciences

Final Exam
Numerical Analysis
22-06-2022

1. (6 points) Given $f(x)=x^{4}-2 x^{3}+2 x+1$ with $p_{0}=-1$, use Horner method to find p_{2} as a rational number.
2. (6 points) Let $f(x)=\sin (\ln x)$. (a) Approximate $f(2.2)$ using $P(2.2)$, where $P(x)$ is the Lagrange polynomial degree 2 with $x_{0}=2, x_{1}=2.4$, and $x_{2}=2.6$.
(b) Find the actual error.

Lagrange polynomial: $P(x)=\sum f\left(x_{k}\right) L_{k}(x)$, where $L_{k}(x)=\prod_{i \neq k} \frac{\left(x-x_{i}\right)}{\left(x_{k}-x_{i}\right)}$
3. (6 points) Use Simpson's rule for $\int_{0}^{0.1} \sqrt{1+x} d x$, and find the error bound.

Simpson's rule: $\int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{5}}{90} f^{(4)}(t)$
4. (6 points) Approximate $\int_{0}^{2} x^{2} e^{-x^{2}} d x$ with $h=0.5$ using (a) Composite Trapezoidal rule (b) Composite Simpson's rule.
5. (8 points) (a) Prove that $P_{3}(x)=x^{3}-\frac{3}{5} x$ is Legendre polynomial degree 3.
(b) Approximate $\int_{1}^{1.6} \frac{2 x}{x^{2}-4} d x$ using Gaussian Quadrature with $n=3$.
(c) Find the actual error.

Gaussian quadrature: $\int_{-1}^{1} f(x) d x \approx \frac{1}{9}[5 f(-\sqrt{0.6})+8 f(0)+5 f(\sqrt{0.6})]$, where $\int_{a}^{b} f(x) d x=\int_{-1}^{1} f\left(\frac{(b-a) t+(b+a)}{2}\right) \frac{(b-a)}{2} d t$
6. (8 points) (a) Use Euler method for the initial value problem $y^{\prime}=1+(t-y)^{2}$ on the interval $3 \leq t \leq 4$ with $y(3)=2.5$ and $h=0.5$
(b) Show that $y(t)=t+\frac{1}{1-t}$ is exact solution.
(c) Find the actual error for $y(4)$.

