Philadelphia University

Department of Basic Sciences

1. (a) (3 points) Given $f(x) \in C[3.2,4]$, find p_{2} using Bisection method.

$$
f(x)=x^{3}-7 x^{2}+14 x-6
$$

(b) (3 points) What is the minimum iterations n for the approximation p_{n} to be accurate within 10^{-10} ?
2. (a) (2 points) Show that $f(x)=0$ if and only if $g(x)=x$.

$$
f(x)=x^{5}-x^{2}-3 ; \quad g(x)=\sqrt{\frac{2 x^{2}+3}{x^{3}+1}}
$$

(b) (2 points) Given $p_{0}=1.5$, find p_{2} using the Fixed-Point Iteration method.
3. (a) (2 points) Given $f(x)=\sin x-e^{-x}$ and $p_{0}=1$, find p_{1} using Newton method.
(b) (2 points) Using $p_{0}=1$ and $p_{1}=0.5$, find p_{2} using Secant method.
4. (6 points) Use Horner method to find p_{1} as a rational number, with $p_{0}=\frac{1}{2}$

$$
P(x)=x^{4}-2 x^{3}+1
$$

5. (4 points) Use Neville method to approximate $f(1.5)$ using Lagrange polynomial degree 2.

n	x	$f(x)$	$\operatorname{deg} 1$	$\operatorname{deg} 2$
0	1.0	2.7536		
1	1.3	3.2740	$(0,1)=3.6209$	
2	1.6	3.7985	$(1,2)=?$	$(0,1,2)=?$

6. (6 points) Given $f(x)=x+\frac{1}{x}$ with $x_{0}=\frac{1}{3}, x_{1}=1, x_{2}=2$, find the Lagrange polynomial of degree 2. (Final answer in the form $A x^{2}+B x+C$ where A, B, C are rational numbers.)
