PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Midterm Exam

Numerical Analysis

16 - 05 - 2022

1. (a) (3 points) Given $f(x) \in C[3.2, 4]$, find p_2 using Bisection method.

$$f(x) = x^3 - 7x^2 + 14x - 6$$

(b) (3 points) What is the minimum iterations n for the approximation p_n to be accurate within 10^{-10} ?

2. (a) (2 points) Show that f(x) = 0 if and only if g(x) = x.

$$f(x) = x^5 - x^2 - 3;$$
 $g(x) = \sqrt{\frac{2x^2 + 3}{x^3 + 1}}$

- (b) (2 points) Given $p_0 = 1.5$, find p_2 using the Fixed-Point Iteration method.
- 3. (a) (2 points) Given f(x) = sin x e^{-x} and p₀ = 1, find p₁ using Newton method.
 (b) (2 points) Using p₀ = 1 and p₁ = 0.5, find p₂ using Secant method.
- 4. (6 points) Use Horner method to find p_1 as a rational number, with $p_0 = \frac{1}{2}$

$$P(x) = x^4 - 2x^3 + 1$$

5. (4 points) Use Neville method to approximate f(1.5) using Lagrange polynomial degree 2.

n	x	f(x)	$\deg 1$	$\deg 2$
0	1.0	2.7536		
1	1.3	3.2740	(0,1) = 3.6209	
2	1.6	3.7985	(1,2) = ?	(0,1,2) = ?

6. (6 points) Given $f(x) = x + \frac{1}{x}$ with $x_0 = \frac{1}{3}$, $x_1 = 1$, $x_2 = 2$, find the Lagrange polynomial of degree 2. (Final answer in the form $Ax^2 + Bx + C$ where A, B, C are rational numbers.)

-Amin Witno