Philadelphia University
 Department of Basic Sciences

Final Exam

Numerical Analysis

Write complete solution for each problem.

1. Consider the function $f(x)=\sin (\ln x)$.
(a) Construct Lagrange interpolation polynomial of degree two for $f(x)$ using $x_{0}=2, x_{1}=2.4$, and $x_{2}=2.6$.
(b) Use the result in (a) to approximate $f(2.2)$.
(c) Compute the actual error for the result in (b).
2. Approximate the definite integral

$$
\int_{0}^{0.1} \sqrt{1+x} d x
$$

using the following methods, and find the error bound for each result.
(a) Trapezoidal rule
(b) Simpson's rule
(c) Simpson's Three-Eighths rule
3. Consider the differential equation $y^{\prime}=1+y / t+(y / t)^{2}$ with initial value $y(1)=0$.
(a) Approximate $y(1.4)$ using Euler's method with $h=0.2$.
(b) Compute the actual error, given the exact solution $y(t)=t \tan (\ln t)$.
4. Use Taylor's method of order two to approximate the solution to the differential equation $y^{\prime}=\sin t+e^{-t}$ with initial value $y(0)=0$, in the interval $0 \leq t \leq 1$ using $h=0.5$.
5. Consider the differential equation $y^{\prime}=y-t^{2}+1$ with the given initial value $y(0.1)=0.657414$. Use the Runge-Kutta method of order four to approximate $y(0.2)$ using $h=0.1$.

