PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Numerical Analysis

21 - 01 - 2013

Write complete solution for each problem.

- 1. Consider the function $f(x) = \sin(\ln x)$.
 - (a) Construct Lagrange interpolation polynomial of degree two for f(x) using $x_0 = 2, x_1 = 2.4$, and $x_2 = 2.6$.
 - (b) Use the result in (a) to approximate f(2.2).
 - (c) Compute the actual error for the result in (b).
- 2. Approximate the definite integral

$$\int_0^{0.1} \sqrt{1+x} \, dx$$

using the following methods, and find the error bound for each result.

- (a) Trapezoidal rule
- (b) Simpson's rule
- (c) Simpson's Three-Eighths rule
- 3. Consider the differential equation $y' = 1 + y/t + (y/t)^2$ with initial value y(1) = 0.
 - (a) Approximate y(1.4) using Euler's method with h = 0.2.
 - (b) Compute the actual error, given the exact solution $y(t) = t \tan(\ln t)$.
- 4. Use Taylor's method of order two to approximate the solution to the differential equation $y' = \sin t + e^{-t}$ with initial value y(0) = 0, in the interval $0 \le t \le 1$ using h = 0.5.
- 5. Consider the differential equation $y' = y t^2 + 1$ with the given initial value y(0.1) = 0.657414. Use the Runge-Kutta method of order four to approximate y(0.2) using h = 0.1.

-Amin Witno