Philadelphia University

Department of Basic Sciences

Final Exam

Numerical Analysis

There are 10 problems in this exam.
First, delete 3 problems of your choice. (1 mark)
Then solve the remaining 7 problems. (7 marks each)

1. Use Runge-Kutta of order four to approximate the solution for w_{1} (only) to the following initial-value problem, and compare the results to the actual value.

$$
y^{\prime}=1+(t-y)^{2}, \quad 3 \leq t \leq 4, \quad y(3)=2.5, \quad h=0.5
$$

with actual solution $y(t)=t+\frac{1}{1-t}$.
2. Use (a) Modified Euler method and (b) Taylor method of order two to approximate the solution for w_{1} (only) to the following initial-value problem, and compare the results to the actual value.

$$
y^{\prime}=1+(t-y)^{2}, \quad 3 \leq t \leq 4, \quad y(3)=2.5, \quad h=0.5
$$

with actual solution $y(t)=t+\frac{1}{1-t}$.
3. Use Euler method to approximate the solution for w_{1} (only) to the following initial-value problem, and then estimate the error bound.

$$
y^{\prime}=y-2 t^{2}+2, \quad 0 \leq t \leq 2, \quad y(0)=1, \quad h=0.25
$$

with actual solution $y(t)=2(t+1)^{2}-e^{t}$.
4. Approximate the integral with $h=0.5$

$$
\int_{0}^{2} x^{2} e^{-x^{2}} d x
$$

using (a) Composite Trapezoidal rule, (b) Composite Simpson's rule, and (c) Composite Midpoint rule.
5. Approximate the following integral using (a) Trapezoidal rule and (b) Midpoint rule and find a bound for the error for each method.

$$
\int_{1}^{1.5} x^{2} \ln x d x
$$

6. Use (a) forward/backward-difference formulas and (b) three-point formulas to determine each missing entry in the following table.

x	$f(x)$	$f^{\prime}(x)$
0.2	0.74140	
0.4	1.37180	
0.6	1.90211	

7. Use Neville's method to approximate $\sqrt{5}$ with the function $f(x)=5^{x}$ and the values $x_{0}=-1, x_{1}=0, x_{2}=1$, and $x_{3}=2$.
8. Consider the sequence

$$
p_{n}=\frac{1}{n^{3}}, \quad n \geq 1
$$

(a) Show that the sequence converges linearly to $p=0$.
(b) How large must n be before $\left|p_{n}-p\right| \leq 5 \times 10^{-5}$?
(c) Generate the first three terms of the sequence $\left\{\hat{p}_{n}\right\}$ using Aitken's Δ^{2} method.
9. (a) Use the Bisection method to find a solution for $f(x)=x^{5}-2 x^{3}-3=0$ (up to p_{5}) on the interval $[1,2]$.
(b) Determine the number of iterations needed to achieve an approximation with accuracy 5×10^{-7}.
10. (a) Use Newton's method to find a solution (up to p_{3}) for $f(x)=x-\cos x=0$ on the interval $[0, \pi / 2]$ using $p_{0}=0$.
(b) Repeat (a) using the Secant method, with $p_{0}=0$ and $p_{1}=\pi / 2$.

