Philadelphia University

Department of Basic Sciences

Choose five problems.

1. Let $x_{0}=0, x_{1}=0.5$, and $x_{2}=1$. Construct interpolation polynomial of degree two to approximate $f(0.45)$ where $f(x)=\tan x$.
2. Use Neville's method to approximate $\sqrt{7}$ with the function $f(x)=7^{x}$ and the values $x_{0}=0, x_{1}=1$, and $x_{2}=2$.
3. Determine each missing entry in the following table using the three-point formulas with $h=0.1$ or $h=-0.1$.

x	$f(x)$	$f^{\prime}(x)$
1.4	0.925212	
1.5	0.778073	
1.6	0.549355	

4. Approximate the integral

$$
\int_{0}^{3} e^{x^{2}} d x
$$

(a) using the Midpoint rule
(b) using Simpson's Three-Eighths rule
5. Approximate the integral

$$
\int_{0}^{2} \frac{1}{x^{2}+2} d x
$$

with $n=4$
(a) using the Composite Trapezoidal rule
(b) using the Composite Simpson's rule
6. The actual value of the integral

$$
\int_{0}^{\pi / 4} \cos ^{2} x d x
$$

is 0.64269908 . Compute the Simpson's rule approximations $S(a, b), S\left(a, \frac{a+b}{2}\right)$, and $S\left(\frac{a+b}{2}, b\right)$ to verify the error estimation

$$
\frac{1}{15}\left|S(a, b)-S\left(a, \frac{a+b}{2}\right)-S\left(\frac{a+b}{2}, b\right)\right|
$$

comparing it to the actual error.

