PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Numerical Analysis

24 - 12 - 2006

Choose five problems.

- 1. Let $x_0 = 0$, $x_1 = 0.5$, and $x_2 = 1$. Construct interpolation polynomial of degree two to approximate f(0.45) where $f(x) = \tan x$.
- 2. Use Neville's method to approximate $\sqrt{7}$ with the function $f(x) = 7^x$ and the values $x_0 = 0, x_1 = 1$, and $x_2 = 2$.
- 3. Determine each missing entry in the following table using the three-point formulas with h = 0.1 or h = -0.1.

x	f(x)	f'(x)
1.4	0.925212	
1.5	0.778073	
1.6	0.549355	

4. Approximate the integral

$$\int_0^3 e^{x^2} dx$$

- (a) using the Midpoint rule
- (b) using Simpson's Three-Eighths rule
- 5. Approximate the integral

$$\int_{0}^{2} \frac{1}{x^{2} + 2} \, dx$$

with n = 4

- (a) using the Composite Trapezoidal rule
- (b) using the Composite Simpson's rule
- 6. The actual value of the integral

$$\int_0^{\pi/4} \cos^2 x \ dx$$

is 0.64269908. Compute the Simpson's rule approximations $S(a, b), S(a, \frac{a+b}{2})$, and $S(\frac{a+b}{2}, b)$ to verify the error estimation

$$\frac{1}{15} \left| S(a,b) - S\left(a, \frac{a+b}{2}\right) - S\left(\frac{a+b}{2}, b\right) \right|$$

comparing it to the actual error.

-Amin Witno