Philadelphia University

Department of Basic Sciences

Exam 1

Numerical Analysis

1. (a) Find the third Taylor polynomial for $f(x)=e^{-x}$ about the center $x=0$.
(b) Use it to approximate the value of $e^{-0.5}$.
(c) What is the error bound in this approximation?
2. (a) Use Bisection Method to approximate the value of $\sqrt[3]{2}$ on the interval $(1,2)$ until you find p_{4}.
(b) How many iterations are needed to have error less than 10^{-7} ?
3. Let $f(x)=x^{2}-5$ and $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$ with given interval $(2,3)$.
(a) Show that p is a root of f if and only if p is a fixed point of g.
(b) Use Fixed Point iterations for $g(x)$ with $p_{0}=2.5$ until you find p_{3}
(c) Show that $g(x)$ satisfies the conditions of Fixed Point Theorem.
(d) How many iterations are needed to have error less than 10^{-5} ?
4. Let $f(x)=e^{2 x}-2 x^{2}-2 x-1$ with given interval $(-1,1)$.
(a) Use the Secant Method to find a root of f with $p_{0}=-1$ and $p_{1}=1$ until you find p_{3}.
(b) Use Newton's Method with $p_{0}=-1$ until you find p_{3}.
(c) Show that $p=0$ is a root of $f(x)$ and find its multiplicity m.
(d) Since $m>1$ we should replace $f(x)$ by $\mu(x)=\frac{f(x)}{f^{\prime}(x)}$ before applying Newton's Method. What will be the new iteration function $g(x)$? (You are not asked to do the iteration, only find g.)
