PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 1

Numerical Analysis

16 - 11 - 2006

- 1. (a) Find the third Taylor polynomial for $f(x) = e^{-x}$ about the center x = 0.
 - (b) Use it to approximate the value of $e^{-0.5}$.
 - (c) What is the error bound in this approximation?
- 2. (a) Use Bisection Method to approximate the value of $\sqrt[3]{2}$ on the interval (1,2) until you find p_4 .
 - (b) How many iterations are needed to have error less than 10^{-7} ?
- 3. Let $f(x) = x^2 5$ and $g(x) = x \frac{f(x)}{f'(x)}$ with given interval (2,3).
 - (a) Show that p is a root of f if and only if p is a fixed point of g.
 - (b) Use Fixed Point iterations for g(x) with $p_0 = 2.5$ until you find p_3
 - (c) Show that g(x) satisfies the conditions of Fixed Point Theorem.
 - (d) How many iterations are needed to have error less than 10^{-5} ?
- 4. Let $f(x) = e^{2x} 2x^2 2x 1$ with given interval (-1, 1).
 - (a) Use the Secant Method to find a root of f with $p_0 = -1$ and $p_1 = 1$ until you find p_3 .
 - (b) Use Newton's Method with $p_0 = -1$ until you find p_3 .
 - (c) Show that p = 0 is a root of f(x) and find its multiplicity m.
 - (d) Since m > 1 we should replace f(x) by $\mu(x) = \frac{f(x)}{f'(x)}$ before applying Newton's Method. What will be the new iteration function g(x)? (You are not asked to do the iteration, only find g.)

-Amin Witno