PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Computational Number Theory

24 - 01 - 2011

- 1. In the RSA algorithm, we use $n = 893 = 19 \times 47$ and e = 325. Find the value of the decryption key d.
- 2. Let n = 10t + u, where u is the unit digit of n. Prove that $19 \mid n$ if and only if $19 \mid t + 2u$.
- 3. Evaluate the periodic infinite continued fraction $[2, \overline{4, 1}]$. Write your answer in the form $\frac{P+\sqrt{n}}{Q}$ using integers P, Q, and n.
- 4. Illustrate QSA with n = 91027. The table has been provided below.

	1091^2	523^{2}	675^2	854^2	1001^2
2	1	6	1	2	6
3	2	_	—	_	—
5	1	—	1	2	—
7	1	1	2	—	_
11	1	—	—	1	1
13	_	_	_	_	-

- 5. (a) Given that $3^{112} \equiv 1 \pmod{113}$, illustrate Lucas' test to see if 113 is a prime number. (b) What is your conclusion?
- 6. (a) Prove that the number $2^{48} + 1$ is composite and find one of its factors. (b) Find two non-trivial factors of the number $2^{55} 1$.
- 7. Let $F_n = 2^{2^n} + 1$. Use induction to prove that $F_n = F_0 \times F_1 \times F_2 \times \cdots \times F_{n-1} + 2$ for all integers $n \ge 1$.
- 8. Let p > 2 be a prime number and $M_p = 2^p 1$. Prove that M_p is either a Mersenne prime or a Fermat pseudoprime base a = 2.

-Amin Witno