Philadelphia University

Department of Basic Sciences

1. In the RSA algorithm, we use $n=893=19 \times 47$ and $e=325$. Find the value of the decryption key d.
2. Let $n=10 t+u$, where u is the unit digit of n. Prove that $19 \mid n$ if and only if $19 \mid t+2 u$.
3. Evaluate the periodic infinite continued fraction $[2, \overline{4}, 1]$. Write your answer in the form $\frac{P+\sqrt{n}}{Q}$ using integers P, Q, and n.
4. Illustrate QSA with $n=91027$. The table has been provided below.

	1091^{2}	523^{2}	675^{2}	854^{2}	1001^{2}
2	1	6	1	2	6
3	2	-	-	-	-
5	1	-	1	2	-
7	1	1	2	-	-
11	1	-	-	1	1
13	-	-	-	-	-

5. (a) Given that $3^{112} \equiv 1(\bmod 113)$, illustrate Lucas' test to see if 113 is a prime number. (b) What is your conclusion?
6. (a) Prove that the number $2^{48}+1$ is composite and find one of its factors. (b) Find two non-trivial factors of the number $2^{55}-1$.
7. Let $F_{n}=2^{2^{n}}+1$. Use induction to prove that $F_{n}=F_{0} \times F_{1} \times F_{2} \times \cdots \times F_{n-1}+2$ for all integers $n \geq 1$.
8. Let $p>2$ be a prime number and $M_{p}=2^{p}-1$. Prove that M_{p} is either a Mersenne prime or a Fermat pseudoprime base $a=2$.
