PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Computational Number Theory

06 - 06 - 2010

- 1. Evaluate the infinite periodic continued fraction $[5, \overline{2, 3}]$. Write your answer in the form $\frac{P+\sqrt{n}}{Q}$ using P, Q, n integers.
- 2. Illustrate Miller-Rabin test with n = 1105 and a = 2. What is the conclusion?
- 3. Illustrate quadratic sieve with n = 1457. The table has been provided below.

	41^{2}	54^{2}	57^{2}	69^{2}	101^{2}
2	5	1	1	1	1
3	_	_	1	1	—
5	_	_	1	1	—
7	1		-	-	—
11	_	_	1	-	—
13	_	_	_	1	_

- 4. Find a prime p < 20 such that the number $7 \times 31 \times p$ is Carmichael.
- 5. Prove that the Fermat number $F_n = 2^{2^n} + 1$ is a prime or Fermat pseudoprime base 2, for all $n \ge 0$.
- 6. Prove that the number 107 is prime using Lucas's test, a = 2.

-Amin Witno