PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam Computational Number Theory 26–01–2010

- 1. In an RSA example, Alia chooses n = pq = 7169. Given that $\phi(n) = 6996$, find p and q.
- 2. Illustrate Fermat factorization with n = 7169.
- 3. The following table is used to illustrate the quadratic sieve factorization method with n = 3959. Complete the algorithm.

	63^{2}	89^{2}	90^{2}	91^{2}
2	1	_	1	_
3	_	1	_	1
5	1	-	_	—
7	_	_	1	_
11	_	_	_	2
13	—	—	1	—

- 4. Evaluate the periodic infinite continued fraction $[2, \overline{6, 1}]$. Write your answer in the form $\frac{P+\sqrt{n}}{Q}$ where P, Q, and n are all integers.
- 5. Illustrate Lucas test (extended Fermat test) to show that n = 149 is a prime number, using the base a = 2.
- 6. Consider the Fermat numbers $F_n = 2^{2^n} + 1$. Prove the recurrence relation

$$F_n = F_0 F_1 F_2 \cdots F_{n-1} + 2$$

for all $n \geq 1$.

7. The number 8191 is prime. Let $n = 2^{12} \times 8191$. Is n a perfect number? Why or why not?