Philadelphia University
 Department of Basic Sciences

1. In an RSA example, Alia chooses $n=p q=7169$. Given that $\phi(n)=6996$, find p and q.
2. Illustrate Fermat factorization with $n=7169$.
3. The following table is used to illustrate the quadratic sieve factorization method with $n=3959$. Complete the algorithm.

	63^{2}	89^{2}	90^{2}	91^{2}
2	1	-	1	-
3	-	1	-	1
5	1	-	-	-
7	-	-	1	-
11	-	-	-	2
13	-	-	1	-

4. Evaluate the periodic infinite continued fraction $[2, \overline{6}, 1]$. Write your answer in the form $\frac{P+\sqrt{n}}{Q}$ where P, Q, and n are all integers.
5. Illustrate Lucas test (extended Fermat test) to show that $n=149$ is a prime number, using the base $a=2$.
6. Consider the Fermat numbers $F_{n}=2^{2^{n}}+1$. Prove the recurrence relation

$$
F_{n}=F_{0} F_{1} F_{2} \cdots F_{n-1}+2
$$

for all $n \geq 1$.
7. The number 8191 is prime. Let $n=2^{12} \times 8191$. Is n a perfect number? Why or why not?

