Philadelphia University

Department of Basic Sciences

1. For the RSA encryption, Alia has selected the product $n=5429=61 \times 89$ with the encryption key $e=19$. What is her secret decryption key d ?
2. Illustrate Fermat factorization with $n=314869$.
3. Given the congruence $987^{2} \equiv 654^{2}(\bmod 20239)$. Factor the number 20239 using the GCD algorithm.
4. Represent the number $\alpha=\sqrt{222}$ using a periodic infinite continued fraction, using the algorithm given by the following recursion.

$$
\begin{array}{llll}
P_{0}=0 & Q_{0}=1 & \alpha_{0}=\sqrt{n} & a_{0}=\lfloor\sqrt{n}\rfloor \\
P_{k}=a_{k-1} Q_{k-1}-P_{k-1} & Q_{k}=\frac{n-P_{k}^{2}}{Q_{k-1}} & \alpha_{k}=\frac{P_{k}+\sqrt{n}}{Q_{k}} & a_{k}=\left\lfloor\alpha_{k}\right\rfloor
\end{array}
$$

5. Let $M_{p}=2^{p}-1$, where p is prime. Suppose that M_{p} is composite. Prove that M_{p} is a Fermat pseudoprime to the base $a=2$.
6. Let $n=2552$.
(a) Factor n into primes.
(b) Find all the divisors of n.
(c) Evaluate $\sigma(n)$.
(d) Is n a perfect number? Why or why not?
