PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2 Computational Number Theory 30–04–2009

Choose 4 problems.

1. Complete the quadratic sieve example, n = 119, given the factorization table.

	11^{2}	16^{2}	22^{2}	25^{2}	27^{2}
2	1	1	3	1	_
3	_	2	_	1	1
5	_	_	_	1	1
7	—	_	_	_	_

- 2. Evaluate the periodic infinite continued fraction $[3, \overline{1, 4, 1}]$. Write the final answer in the form $\frac{P+\sqrt{n}}{Q}$ with P, Q, n integers.
- 3. Let p = 6k + 1 and q = 12k + 1 and r = 18k + 1 be three prime numbers. Let $n = p \times q \times r$. Prove that n is a Carmichael number.
- 4. Prove that 121 is a strong pseudoprime with base a = 3.
- 5. Prove that 257 is prime using the extended Fermat test, base a = 3.

–Amin Witno