Philadelphia University

DEPARTMENT OF BASIC SCIENCES

Final Exam

Computational Number Theory

15 - 06 - 2008

- 1. Illustrate Fermat factorization with n = 4747.
- 2. Illustrate the Polard rho method with n = 407. Use $x_0 = 3$.
- 3. Illustrate quadratic sieve with n = 1457. Use the following table.

	39^{2}	54^{2}	69^{2}	78^{2}
2				
3				
5				
7				
11				
13				

- 4. Prove that every Mersenne number $M_p = 2^p 1$ is either a prime or a Fermat pseudoprime to the base 2.
- 5. Illustrate Miller-Rabin test with n=273, using the base a=2. What is your conclusion? Choose one answer from the following.
 - (a) prime
 - (b) composite
 - (c) strong pseudoprime
 - (d) either prime or strong pseudoprime
- 6. Evaluate $\sigma(100)$. Is 100 a perfect number? Why or why not?
- 7. Is 1234 a triangular number? Why or why not?

-Amin Witno