Philadelphia University

Department of Basic Sciences

1. Illustrate Fermat factorization with $n=4747$.
2. Illustrate the Polard rho method with $n=407$. Use $x_{0}=3$.
3. Illustrate quadratic sieve with $n=1457$. Use the following table.

	39^{2}	54^{2}	69^{2}	78^{2}
2				
3				
5				
7				
11				
13				

4. Prove that every Mersenne number $M_{p}=2^{p}-1$ is either a prime or a Fermat pseudoprime to the base 2 .
5. Illustrate Miller-Rabin test with $n=273$, using the base $a=2$. What is your conclusion? Choose one answer from the following.
(a) prime
(b) composite
(c) strong pseudoprime
(d) either prime or strong pseudoprime
6. Evaluate $\sigma(100)$. Is 100 a perfect number? Why or why not?
7. Is 1234 a triangular number? Why or why not?
