Philadelphia University

Department of Basic Sciences

Final Exam
Computational Number Theory
07-02-2008

1. Let $n=10 t+u$. Then $19 \mid n$ if and only if $19 \mid(t+2 u)$. Illustrate this divisibility test with $n=20080131$. What is your conclusion?
2. Express the fraction $\frac{250}{472}$ using a finite continued fraction.
3. We are applying the Quadratic Sieve method with $n=897$.

	30^{2}	43^{2}	60^{2}	90^{2}	109^{2}
2					
3					
5					
7					
11					

Complete the table and finish the algorithm.
4. Illustrate Miller-Rabin test with $n=1201$ and $a=3$. What is your conclusion?
5. Apply Euler test for $n=529$ with $a=2$. What is your conclusion?
6. (a) What is a Carmichael number? Show why the number 2465 is Carmichael.
(b) What is a perfect number? Show why the number 496 is perfect.
(c) What is a triangular number? Show why the number 56616 is triangular.
7. Suppose that n is a Fermat pseudoprime base 2 .
(a) Prove that $2^{n}-1$ is composite.
(b) Prove that $2^{n}-1$ is a Fermat pseudoprime base 2.
8. Let F_{n} denote a Fermat number. Prove the following statements.
(a) If $a^{\frac{F_{n}-1}{2}} \equiv-1\left(\bmod F_{n}\right)$ then F_{n} is prime.
(b) The converse is true if $x^{2} \equiv a\left(\bmod F_{n}\right)$ has no solution.
(c) The converse is false if $x^{2} \equiv a\left(\bmod F_{n}\right)$ has a solution.

