PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Computational Number Theory

07 - 02 - 2008

- 1. Let n = 10t + u. Then 19 | n if and only if 19 | (t + 2u). Illustrate this divisibility test with n = 20080131. What is your conclusion?
- 2. Express the fraction $\frac{250}{472}$ using a finite continued fraction.
- 3. We are applying the Quadratic Sieve method with n = 897.

	30^{2}	43^{2}	60^{2}	90^{2}	109^{2}
2					
3					
5					
7					
11					

Complete the table and finish the algorithm.

- 4. Illustrate Miller-Rabin test with n = 1201 and a = 3. What is your conclusion?
- 5. Apply Euler test for n = 529 with a = 2. What is your conclusion?
- 6. (a) What is a Carmichael number? Show why the number 2465 is Carmichael.
 - (b) What is a perfect number? Show why the number 496 is perfect.
 - (c) What is a triangular number? Show why the number 56616 is triangular.
- 7. Suppose that n is a Fermat pseudoprime base 2.
 - (a) Prove that $2^n 1$ is composite.
 - (b) Prove that $2^n 1$ is a Fermat pseudoprime base 2.
- 8. Let F_n denote a Fermat number. Prove the following statements.
 - (a) If $a^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$ then F_n is prime.
 - (b) The converse is true if $x^2 \equiv a \pmod{F_n}$ has no solution.
 - (c) The converse is false if $x^2 \equiv a \pmod{F_n}$ has a solution.

-Amin Witno