PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2	Computational Nu	umber Theory	23 - 12 - 2007
	L	v	

- 1. (a) Illustrate Pollard rho method with n = 143. Use $x_0 = 3$.
 - (b) Factor n = 7801 using Fermat factorization method. It is known that $n = a \times b$ where a is about 9 times larger than b.
- 2. The following table is taken from a Qudratic Sieve method with n = 799.

	29^{2}	31^{2}	40^{2}	58^{2}	75^{2}
2	1	1	1	3	5
3	1	4	_	1	_
5	_	-		-	
7	1	_	_	1	_

- (a) Find three congruences in the form $x^2 \equiv y^2 \pmod{799}$. For each one, find out if it is trivial or non-trivial.
- (b) Factor n using gcd.
- 3. Evaluate the periodic infinite continued fraction $[3, 1, \overline{4, 1}]$. Write the final answer in the form $\frac{P+\sqrt{n}}{Q}$ with P, Q, n integers.
- 4. (a) Apply Miller-Rabin test for n = 1729 and a = 2. What is your conclusion?
 (b) Is n = 1729 a Carmichael number? Why or why not?
- 5. Given an odd integer n > 1. Suppose that a and b are inverses modulo n. Prove that n is a Fermat pseudoprime base a if and only if n is a Fermat pseudoprime base b.

-Amin Witno