Philadelphia University

Department of Basic Sciences

1. (a) Illustrate Pollard rho method with $n=143$. Use $x_{0}=3$.
(b) Factor $n=7801$ using Fermat factorization method. It is known that $n=$ $a \times b$ where a is about 9 times larger than b.
2. The following table is taken from a Qudratic Sieve method with $n=799$.

	29^{2}	31^{2}	40^{2}	58^{2}	75^{2}
2	1	1	1	3	5
3	1	4	-	1	-
5	-	-	-	-	-
7	1	-	-	1	-

(a) Find three congruences in the form $x^{2} \equiv y^{2}(\bmod 799)$. For each one, find out if it is trivial or non-trivial.
(b) Factor n using ged.
3. Evaluate the periodic infinite continued fraction $[3,1, \overline{4,1}]$. Write the final answer in the form $\frac{P+\sqrt{n}}{Q}$ with P, Q, n integers.
4. (a) Apply Miller-Rabin test for $n=1729$ and $a=2$. What is your conclusion?
(b) Is $n=1729$ a Carmichael number? Why or why not?
5. Given an odd integer $n>1$. Suppose that a and b are inverses modulo n. Prove that n is a Fermat pseudoprime base a if and only if n is a Fermat pseudoprime base b.

