Philadelphia University
 Department of Basic Sciences

Final Exam

Each problem is worth 5 points.

1. Apply Fermat Factorization technique to factor the number $n=7313$.
2. Find the number represented by the periodic infinite continued fraction $[2, \overline{4}]$. Write your answer in the form $\frac{P+\sqrt{d}}{Q}$ with P, Q, d integers.
3. Evaluate $\sigma(n)$ given the prime factorization $n=2^{4} \cdot 13^{2} \cdot 37$. Is n a perfect number?
4. Given the congruence $1123^{2} \equiv 453^{2}(\bmod 13199)$, use Euclidean Algorithm to factor the number $n=13199$.
5. Suppose $n=4187$ is used in an RSA cryptosystem and that you discover $\phi(n)=$ 4056. Use this information to find the factors of n.
6. Illustrate Lucas-Lehmer primality test using the Mersenne number M_{7}. What conclusion do you get?
7. Apply Pollard rho method to factor the number $n=1807$, using initial term $x_{0}=3$.
8. Illustrate Miller-Rabin primality test using $n=781$ and base number $a=5$. What conclusion do you get?
9. Use the appropriate algorithm in order to express the quadratic irrational number

$$
\alpha=\frac{5-\sqrt{6}}{2}
$$

as a periodic infinite continued fraction.
10. Prove that every Fermat number is either a Fermat prime or a Fermat pseudoprime to the base 2.

