PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Number Theory

03 - 01 - 2019

Choose 5 problems out of 6. No bonus.

- 1. This problem has 4 parts:
 - (a) Evaluate $|5|_{13}$.
 - (b) Find all the primitive roots mod 11.
 - (c) If g is a primitive root mod 27, evaluate $|g^{15}|_{27}$.
 - (d) Count how many primitive roots exist mod 37.
- 2. Evaluate 11^{70} % 100 using successive squaring algorithm.
- 3. Find all the integer solutions of $x^{13} \equiv 7 \pmod{48}$.
- 4. This problem has 2 parts:
 - (a) Prove that 3 is a primitive root mod 14.
 - (b) Use (a) to find all the integer solutions of $5^x \equiv 13 \pmod{14}$.
- 5. Prove that $a^{37} \equiv a \pmod{95}$ for all integers a. (Use the Chinese remainder theorem and Fermat's little theorem.)
- 6. Prove that $\phi(n^2) = n\phi(n)$ for all positive integers n.

–Amin Witno