Philadelphia University Department of Basic Sciences

Exam 2

Number Theory
09-05-2018

1. (2 points) Count how many primitive roots exist mod 409. (Note: 409 is prime.)
2. (2 points) Let a be a primitive root mod 17 . Compute $\left|a^{20}\right|_{17}$.
3. (3 points) Use Successive Squaring Algorithm to compute $2^{77} \% 100$.
4. (3 points) Prove that $n^{45} \equiv n(\bmod 115)$ for all integers n, using the Chinese remainder theorem and Fermat's little theorem. (Note: 115 is composite.)
5. (3 points) Solve the congruence $x^{19} \equiv 5(\bmod 36)$.
6. Use your solution of Problem (a) to solve (b) and (c).
(a) (2 points) Prove that 7 is a primitive root $\bmod 22$.
(b) (2 points) Find all the primitive roots mod 22.
(c) (3 points) Solve the congruence $15^{x} \equiv 3(\bmod 22)$.
