Philadelphia University Department of Basic Sciences

Exam 2

Number Theory

1. (2 points) Count how many primitive roots exist mod 463 . (Note: 463 is prime.)
2. (4 points) Solve the congruence $x^{7} \equiv 3(\bmod 55)$.
3. (4 points) Solve the discrete logarithm problem $9^{x} \equiv 3(\bmod 13)$ with the help of the primitive root $g=2$.
4. (3 points) Let a prime $p>2$ and let k be a primitive root $\bmod p$. Prove that $k^{(p-1) / 2} \equiv-1(\bmod p)$.
5. (4 points) Use the Chinese remainder theorem and Fermat's little theorem to prove that $n^{61} \equiv n(\bmod 143)$ for all integers n. (Note: 143 is composite.)
6. (3 points) Let c be an integer such that $c^{8} \equiv-1(\bmod 17)$. Prove that c is a primitive root mod 17 .
