PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Number Theory

30 - 05 - 2012

Solutions must be complete in order to receive full credit.

- 1. Find all the integer solutions to 234x + 105y = 27.
- 2. Find all integers x, solution to the three congruences.

 $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{4}$ $x \equiv 1 \pmod{5}$

- 3. Find a reduced residue system (RRS) modulo 18, consisting of only composites.
- 4. Evaluate 2^{4935} % 29 with the help of Euler's theorem. The number 29 is prime.
- 5. Let n be an integer such that gcd(n, 63) = 1. Use Chinese remainder theorem (CRT) to prove that $n^6 \equiv 1 \pmod{63}$.
- 6. Count how many primitive roots we have modulo n = 3125.
- 7. Find all the integer solutions to the discrete logarithm problem $5^x \equiv 6 \pmod{7}$ using the primitive root g = 3.
- 8. Evaluate the Legendre symbol $\left(\frac{194}{239}\right)$. The number 239 is prime.
- 9. Find all the integer solutions to the quadratic congruence $x^2 \equiv -9 \pmod{65}$. The number 65 is composite.
- 10. Let p > 2 be a prime number. Prove that if g is a primitive root modulo p, then g is a quadratic nonresidue modulo p.

-Amin Witno