Philadelphia University
 Department of Basic Sciences

Final Exam

Number Theory

Solutions must be complete in order to receive full credit.

1. Find all the integer solutions to $234 x+105 y=27$.
2. Find all integers x, solution to the three congruences.

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 3) \\
x \equiv 3 & (\bmod 4) \\
x \equiv 1 & (\bmod 5)
\end{array}
$$

3. Find a reduced residue system (RRS) modulo 18, consisting of only composites.
4. Evaluate $2^{4935} \% 29$ with the help of Euler's theorem. The number 29 is prime.
5. Let n be an integer such that $\operatorname{gcd}(n, 63)=1$. Use Chinese remainder theorem (CRT) to prove that $n^{6} \equiv 1(\bmod 63)$.
6. Count how many primitive roots we have modulo $n=3125$.
7. Find all the integer solutions to the discrete logarithm problem $5^{x} \equiv 6(\bmod 7)$ using the primitive root $g=3$.
8. Evaluate the Legendre symbol $\left(\frac{194}{239}\right)$. The number 239 is prime.
9. Find all the integer solutions to the quadratic congruence $x^{2} \equiv-9(\bmod 65)$. The number 65 is composite.
10. Let $p>2$ be a prime number. Prove that if g is a primitive root modulo p, then g is a quadratic nonresidue modulo p.
