PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Number Theory

22 - 01 - 2012

Solutions must be complete in order to receive full credit.

- 1. Let p be a prime number. Prove that if $3 \mid p-1$ then $p \in [1]_6$.
- 2. Evaluate 310! % 313 with the help of Wilson's theorem. Note that 313 is prime.
- 3. Evaluate 7^{2596} % 405 with the help of Euler's theorem.
- 4. Find all solutions to the discrete logarithm problem $5^x \equiv 4 \pmod{11}$ using the primitive root g = 2.
- 5. Evaluate the Legendre symbol $\left(\frac{7250}{8111}\right)$.
- 6. Find all solutions to the congruence $x^2 \equiv 34 \pmod{55}$. Note that 55 is composite.
- 7. Let g be a primitive root modulo a prime number p. Prove that $\left(\frac{g}{p}\right) = -1$.

-Amin Witno