PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Number Theory

02 - 06 - 2011

- 1. Evaluate gcd(21560, 4356) by (a) the Euclidean algorithm (b) factorization into primes.
- 2. Given a prime number p > 2. Prove that if $p \in [2]_3$ then $p \in [5]_6$.
- 3. Solve the following system of three congruences.

 $x \equiv 2 \pmod{5}$ $x \equiv 7 \pmod{8}$ $x \equiv 9 \pmod{11}$

- 4. Prove that $x^{49} \equiv x \pmod{221}$ for all integer x. Note that $221 = 13 \times 17$.
- 5. Solve the discrete logarithm problem $7^x \equiv 5 \pmod{13}$ using the primitive root g = 2.
- 6. Evaluate the Legendre symbol $\left(\frac{11}{29}\right)$ according to (a) Gauss's lemma (b) the reciprocity law.
- 7. Solve the quadratic congruence $x^2 \equiv 34 \pmod{55}$. Note that $55 = 5 \times 11$.

-Amin Witno