Philadelphia University Department of Basic Sciences

Exam 2

Number Theory

03-05-2011

Solutions must be complete in order to receive full credit.

1. Find a reduced residue system modulo $n=16$ using only prime numbers.
2. Compute $2^{5200} \% 405$ with the help of Euler's theorem.
3. Evaluate $|7|_{20}$. Is 7 a primitive root modulo 20 ? Why or why not?
4. Solve the discrete logarithm problem

$$
8^{x} \equiv 15 \quad(\bmod 17)
$$

using the primitive root $g=3$.
5. Let g be an odd number. Prove that if g is a primitive root modulo 11 , then g is also a primitive root modulo 22 .
-Amin Witno

