Philadelphia University

Department of Basic Sciences

Final Exam

Number Theory

1. Find all the solutions to $405 x+234 y=45$.
2. Solve the following system of three congruences:

$$
\begin{aligned}
& x \equiv 4(\bmod 5) \\
& x \equiv 7(\bmod 8) \\
& x \equiv 8(\bmod 11)
\end{aligned}
$$

3. Find all the solutions to $x^{453} \equiv 2(\bmod 799)$. Note that $799=17 \times 47$.
4. Find all the primitive roots modulo 18 .
5. Complete the following table and use it to solve $2 \times 7^{x} \equiv 13(\bmod 17)$.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$5^{k} \% 17$																

6. (a) Let $n=10 t+u$. Prove that if $13 \mid(t+4 u)$ then $13 \mid n$.
(b) Suppose that $\operatorname{gcd}(a, 247)=1$. Prove that $a^{36} \equiv 1(\bmod 247)$. Note that $247=13 \times 19$.
