Philadelphia University

Department of Basic Sciences

Final Exam

Number Theory

03-02-2008

1. Evaluate $56!\% 59$. The number 59 is prime.
2. Solve the following system of three congruences:

$$
\begin{aligned}
& x \equiv 3(\bmod 7) \\
& x \equiv 5(\bmod 8) \\
& x \equiv 7(\bmod 15)
\end{aligned}
$$

3. Find all the solutions to $x^{29} \equiv 52(\bmod 95)$. Note that $95=5 \times 19$.
4. Is 13 a primitive root modulo 257 ? Why or why not? The number 257 is prime.
5. Complete the following table and use it to solve $2^{x} \equiv 9(\bmod 17)$.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$5^{k} \% 17$																

6. Evaluate the Legendre symbol $\left(\frac{296}{313}\right)$.
7. Prove that $a^{31} \equiv a(\bmod 77)$ for any integer a.
8. Prove that $\phi(n)$ is even for all $n>2$.
