# Philadelphia University 

## Department of Basic Sciences

## Final Exam

Number Theory

Each problem is worth 5 points. Solutions must be complete to receive full credit.

1. Find $a, b$ such that $77 a+176 b=\operatorname{gcd}(77,176)$.
2. Illustrate Fermat Factorization with $n=7597$.
3. Evaluate $\phi(720)$.
4. Solve the congruence $x^{43} \equiv 17(\bmod 77)$.
5. Suppose $\operatorname{gcd}(a, 77)=1$. Prove that $a^{30} \equiv 1(\bmod 77)$ with the help of Chinese Remainder Theorem.
6. How many are the primitive roots modulo 17 ? Show that 11 is one of them.
7. Below is a table for powers of $7 \bmod 17$. Solve the congruence $5^{x} \equiv 11(\bmod 17)$.

| $k$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7^{k} \% 17$ | 7 | 15 | 3 | 4 | 11 | 9 | 12 | 16 | 10 | 2 | 14 | 13 | 6 | 8 | 5 | 1 |

8. Evaluate the Legendre symbol $\left(\frac{a}{p}\right)$ with $a=47$ and $p=71$.
9. Solve the quadratic congruence $x^{2} \equiv 71(\bmod 77)$.
10. Let $g$ be a primitive root modulo a prime $p>2$. Prove that $g$ is a quadratic non-residue modulo $p$.

The list of primes below 200 .

| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 |  |  |  |
| 139 | 149 | 151 | 157 | 163 | 167 | 173 | 179 | 181 | 191 | 193 | 197 | 199 |  |  |  |  |  |

-Amin Witno

