PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Number Theory

11 - 6 - 2007

Each problem is worth 5 points. Solutions must be complete to receive full credit.

- 1. Find a, b such that $77a + 176b = \gcd(77, 176)$.
- 2. Illustrate Fermat Factorization with n = 7597.
- 3. Evaluate $\phi(720)$.
- 4. Solve the congruence $x^{43} \equiv 17 \pmod{77}$.
- 5. Suppose gcd(a, 77) = 1. Prove that $a^{30} \equiv 1 \pmod{77}$ with the help of Chinese Remainder Theorem.
- 6. How many are the primitive roots modulo 17? Show that 11 is one of them.
- 7. Below is a table for powers of 7 mod 17. Solve the congruence $5^x \equiv 11 \pmod{17}$.

- 8. Evaluate the Legendre symbol $\left(\frac{a}{p}\right)$ with a = 47 and p = 71.
- 9. Solve the quadratic congruence $x^2 \equiv 71 \pmod{77}$.
- 10. Let g be a primitive root modulo a prime p > 2. Prove that g is a quadratic non-residue modulo p.

The list of primes below 200.

2	3 5	7	7 11	13	17	19	23	29	31	37	41	43	47	53	59	61
67	71	73	3 79	83	89	97	101	10	3 1	.07	109	113	12'	7 1	31	137
139	14	9	151	157	163	16'	7 1'	73	179	181	l 19	1 19	93	197	199)

-Amin Witno