Philadelphia University Department of Basic Sciences

Exam 1

Number Theory

Each problem is worth 2 points. Solutions must be complete to receive full credit.

1. Illustrate Fermat Factorization with $n=3569$.
2. Does the equation $36 x+114 y=82$ have a solution? Why or why not?
3. I made two calls today using my Fastlink account, one call to another Fastlink customer for 7 piasters per minute and another call to a MobileCom number for 12 piasters per minute. The total charge was one dinar and 37 piasters. For how long did I talk in each call? Use linear equation theorem to solve this problem.
4. Count how many positive divisors of the number $2,000,000$.
5. Are there infinitely many primes in the sequence $46,49,52,55,58,61,64 \ldots$? Why or why not?
6. Find two Sophie Germain primes between 50 and 100.
7. Estimate how many prime numbers below 100,000 .
8. Proposition: If p is a prime and $p \mid n^{2}$ then $p^{2} \mid n^{2}$. Give an example where this proposition is false when p is not a prime.
9. Euclid's Lemma says that if $d \mid m n$ and d is relatively prime to n then $d \mid m$. Prove it.
10. Prove that there are no prime triplets except $3,5,7$. Hint: Use residues mod 6 .

The list of primes below 200.

2	3	5	7	11	13	17	19	23	29
31	37	41	43	47	53	59	61	67	71
73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199				

