PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

First Exam

NUMBER THEORY
17-11-2005
Each problem is worth 2 points.

1. Factor the number 1749 into primes.
2. Does the equation $200 x+300 y=120$ have a solution? Why or why not?

3 . Are there infinitely many primes in the sequence $2,7,12,17,22,27,32,37$, ... Why or why not?
4. How many are the positive divisors of the number 300,000 ?
5. The equation $13 x+9 y=1$ has a solution $x=-11$ and $y=16$. Find two more solutions.
6. Use Euclidean Algorithm to compute $\operatorname{gcd}(41,29)$.
7. Find a solution of the equation $41 x+29 y=\operatorname{gcd}(41,29)$.
8. Prove that if $\mathrm{m} \mid \mathrm{a}$ and $\mathrm{n} \mid \mathrm{a}$ and $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$ then $\mathrm{mn} \mid \mathrm{a}$.
9. Give an example where number (8) is not true if $\operatorname{gcd}(m, n) \neq 1$.
10. Prove that if m and n are odd then $2 \mid m^{2}+n^{2}$ but $4 \nmid m^{2}+n^{2}$.
11. Bonus: Prove that if m and n are odd then $m^{2}+n^{2}$ is not a square, meaning that $\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{x}^{2}$ has no integer solution for x . Hint: use number (10) and uniqueness of prime factorization.

Primes < 100
2357111317192329313741434753596167717379838997

